Document Detail


Synergistic contribution of SMAD signaling blockade and high localized cell density in the differentiation of NE from H9 cells.
MedLine Citation:
PMID:  25218470     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Directed neural differentiation of human embryonic stem cells (ESCs) enables researchers to generate diverse neuronal populations for human neural development study and cell replacement therapy. To realize this potential, it is critical to precisely understand the role of various endogenous and exogenous factors involved in neural differentiation. Cell density, one of the endogenous factors, is involved in the differentiation of human ESCs. Seeding cell density can result in variable terminal cell densities or localized cell densities (LCDs), giving rise to various outcomes of differentiation. Thus, understanding how LCD determines the differentiation potential of human ESCs is important. The aim of this study is to highlight the role of LCD in the differentiation of H9 human ESCs into neuroectoderm (NE), the primordium of the nervous system. We found the initially seeded cells form derived cells with variable LCDs and subsequently affect the NE differentiation. Using a newly established method for the quantitative examination of LCD, we demonstrated that in the presence of induction medium supplemented with or without SMAD signaling blockers, high LCD promotes the differentiation of NE. Moreover, SMAD signaling blockade promotes the differentiation of NE but not non-NE germ layers, which is dependent on high LCDs. Taken together, this study highlights the need to develop innovative strategies or techniques based on LCDs for generating neural progenies from human ESCs.
Authors:
Chao Liu; Yaping Sun; Joshua Arnold; Bingwei Lu; Su Guo
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-9-9
Journal Detail:
Title:  Biochemical and biophysical research communications     Volume:  -     ISSN:  1090-2104     ISO Abbreviation:  Biochem. Biophys. Res. Commun.     Publication Date:  2014 Sep 
Date Detail:
Created Date:  2014-9-14     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0372516     Medline TA:  Biochem Biophys Res Commun     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2014 Elsevier Inc. All rights reserved.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Down-regulation of Ether-a-go-go-Related Gene Potassium Channel Protein through Sustained Stimulatio...
Next Document:  Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate canc...