Document Detail


Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice.
MedLine Citation:
PMID:  21983273     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Conflicting data have been reported regarding the role of retinol-binding protein (RBP4) in insulin resistance, obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). In this study, we used pharmacological methods to investigate the role of RBP4. RNA oligonucleotide against RBP4 (anti-RBP4 oligo) was transfected into 3T3-L1 adipocytes. RT-PCR analysis showed that RBP4 mRNA expression decreased by 55% (p<0.01) compared with control cells. Validated RNA oligo was used in an in vivo study with high fat diet (HFD) fed - mice. 14weeks of HFD feeding increased RBP4 expression (associated with elevated serum levels measured with immunoblotting and ELISA) by 56% in adipose tissue (p<0.05) and 68% in the liver (p<0.01). Adipose RBP4 levels were significantly reduced after 4weeks treatment with anti-RBP4 oligo (25mg/kg, p<0.01) and rosiglitazone (RSG, 10mg/kg, p<0.05) compared with scrambled RNA oligo (25mg/kg) treated mice. Only anti-RBP4 oligo significantly inhibited RBP4 protein (p<0.01) and mRNA expression (p<0.01) in the liver and reduced serum RBP4 levels. Anti-RBP4 oligo and RSG showed comparable effects on impaired glucose tolerance, hyperinsulinaemia and hyperglycaemia. Anti-RBP4 oligo significantly enhanced adipose-GLUT4 expression (p<0.01) but did not increase muscle-GLUT4. Both RSG and anti-RBP4 oligo significantly reduced hepatic phosphoenolpyruvate carboxykinase expression (both p<0.05). Histological analysis revealed that anti-RBP4 oligo ameliorated hepatic steatosis and reduced lipid droplets associated with normalized liver function. Histological and pharmacological results of this study indicate that RBP4 is not only an adipocytokine, but also a hepatic cytokine leading to metabolic syndrome, NAFLD and type 2 diabetes.
Authors:
Yi Tan; Lun-Quan Sun; Mohammad A Kamal; Xiaoyang Wang; J Paul Seale; Xianqin Qu
Related Documents :
14735293 - Effect of 5-ht depletion by mdma on hyperthermia and arc mrna induction in rat brain.
21699683 - Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in d...
22292433 - Transcriptional activation of microrna-34a by nf-kappa b in human esophageal cancer cells.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-10-1
Journal Detail:
Title:  Biochimica et biophysica acta     Volume:  -     ISSN:  0006-3002     ISO Abbreviation:  -     Publication Date:  2011 Oct 
Date Detail:
Created Date:  2011-10-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0217513     Medline TA:  Biochim Biophys Acta     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2011. Published by Elsevier B.V.
Affiliation:
Department of Medical & Molecular BioSciences, University of Technology Sydney, NSW, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Analysis, occurrence, and function of 9-cis-retinoic acid.
Next Document:  Acute toxicity bioassay of mercury and silver on Capoeta fusca (black fish).