Document Detail

Substance P in heart failure: The good and the bad.
MedLine Citation:
PMID:  24286592     Owner:  NLM     Status:  Publisher    
The tachykinin, substance P, is found primarily in sensory nerves. In the heart, substance P-containing nerve fibers are often found surrounding coronary vessels, making them ideally situated to sense changes in the myocardial environment. Recent studies in rodents have identified substance P as having dual roles in the heart, depending on disease etiology and/or timing. Thus far, these studies indicate that substance P may be protective acutely following ischemia-reperfusion, but damaging long-term in non-ischemic induced remodeling and heart failure. Sensory nerves may be at the apex of the cascade of events leading to heart failure, therefore, they make a promising potential therapeutic target that warrants increased investigation.
Heather M Dehlin; Scott P Levick
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-11-12
Journal Detail:
Title:  International journal of cardiology     Volume:  -     ISSN:  1874-1754     ISO Abbreviation:  Int. J. Cardiol.     Publication Date:  2013 Nov 
Date Detail:
Created Date:  2013-11-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8200291     Medline TA:  Int J Cardiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2013. Published by Elsevier Ireland Ltd.
Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated ci...
Next Document:  Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design ...