Document Detail

Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation.
MedLine Citation:
PMID:  24819860     Owner:  NLM     Status:  Publisher    
CdS quantum dot/vermiculite (CdS/VMT) nanocomposites have been synthesized via a facile one-step method and characterized by X-ray diffraction, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The photocatalytic hydrogen generation activities of these samples were evaluated using Na2S and Na2SO3 as sacrificial reagents in water under visible-light illumination (λ ≥ 420 nm). The most important aspect of this work is the use of natural products (VMT) as host photocatalysts. The effect of CdS content on the rate of visible light photocatalytic hydrogen generation was investigated for different CdS loadings. The synergistic effect of VMT and CdS quantum dots (QDs) leads to efficient separation of the photogenerated charge carriers and, consequently, enhances the visible light photocatalytic hydrogen production activity of the photocatalyst. The CdS/VMT composite with an optimal ratio of 5% exhibits the highest hydrogen evolution rate of 92 μmol h(-1) under visible light irradiation and the highest apparent quantum efficiency of 17.7% at 420 nm. A possible photocatalytic mechanism of the CdS/VMT nanocomposite is proposed and corroborated by photoelectrochemical curves.
Jian Zhang; Wenfeng Zhu; Xiaoheng Liu
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-5-12
Journal Detail:
Title:  Dalton transactions (Cambridge, England : 2003)     Volume:  -     ISSN:  1477-9234     ISO Abbreviation:  Dalton Trans     Publication Date:  2014 May 
Date Detail:
Created Date:  2014-5-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101176026     Medline TA:  Dalton Trans     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Local and Systemic Toxicity of Intravitreal Melphalan for Vitreous Seeding in Retinoblastoma: A Prec...
Next Document:  The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck.