Document Detail


Spatiotemporal mapping of matrix remodelling and evidence of in situ elastogenesis in experimental abdominal aortic aneurysms.
MedLine Citation:
PMID:  24799390     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Spatiotemporal changes in the extracellular matrix (ECM) were studied within abdominal aortic aneurysms (AAAs) generated in rats via elastase infusion. At 7, 14 and 21 days post-induction, AAA tissues were divided into proximal, mid- and distal regions, based on their location relative to the renal arteries and the region of maximal aortic diameter. Wall thicknesses differed significantly between the AAA spatial regions, initially increasing due to positive matrix remodelling and then decreasing due to wall thinning and compaction of matrix as the disease progressed. Histological images analysed using custom segmentation tools indicated significant differences in ECM composition and structure vs healthy tissue, and in the extent and nature of matrix remodelling between the AAA spatial regions. Histology and immunofluorescence (IF) labelling provided evidence of neointimal AAA remodelling, characterized by presence of elastin-containing fibres. This remodelling was effected by smooth muscle α-actin-positive neointimal cells, which transmission electron microscopy (TEM) showed to differ morphologically from medial SMCs. TEM of the neointima further showed the presence of elongated deposits of amorphous elastin and the presence of nascent, but not mature, elastic fibres. These structures appeared to be deficient in at least one microfibrillar component, fibrillin-1, which is critical to mature elastic fibre assembly. The substantial production of elastin and elastic fibre-like structures that we observed in the AAA neointima, which was not observed elsewhere within AAA tissues, provides a unique opportunity to capitalize on this autoregenerative phenomenon and direct it from the standpoint of matrix organization towards restoring healthy aortic matrix structure, mechanics and function. Copyright © 2014 John Wiley & Sons, Ltd.
Authors:
Partha Pratim Deb; Anand Ramamurthi
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-5-6
Journal Detail:
Title:  Journal of tissue engineering and regenerative medicine     Volume:  -     ISSN:  1932-7005     ISO Abbreviation:  J Tissue Eng Regen Med     Publication Date:  2014 May 
Date Detail:
Created Date:  2014-5-6     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101308490     Medline TA:  J Tissue Eng Regen Med     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2014 John Wiley & Sons, Ltd.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  New Antimicrobial and Biocompatible Implant Coating with Synergic Silver-Vancomycin Conjugate Action...
Next Document:  Cryopreservation of canine semen after cold storage in a Neopor box: effect of extender, centrifugat...