Document Detail


Sound-direction identification, interaural time delay discrimination, and speech intelligibility advantages in noise for a bilateral cochlear implant user.
MedLine Citation:
PMID:  11951849     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
OBJECTIVES: To characterize some of the benefits available from using two cochlear implants compared with just one, sound-direction identification (ID) abilities, sensitivity to interaural time delays (ITDs) and speech intelligibility in noise were measured for a bilateral multi-channel cochlear implant user. METHODS: Sound-direction ID in the horizontal plane was tested with a bilateral cochlear implant user. The subject was tested both unilaterally and bilaterally using two independent behind-the-ear ESPRIT (Cochlear Ltd.) processors, as well as bilaterally using custom research processors. Pink noise bursts were presented using an 11-loudspeaker array spanning the subject's frontal 180 degrees arc in an anechoic room. After each burst, the subject was asked to identify which loudspeaker had produced the sound. No explicit training, and no feedback were given. Presentation levels were nominally at 70 dB SPL, except for a repeat experiment using the clinical devices where the presentation levels were reduced to 60 dB SPL to avoid activation of the devices' automatic gain control (AGC) circuits. Overall presentation levels were randomly varied by +/- 3 dB. For the research processor, a "low-update-rate" and a "high-update-rate" strategy were tested. Direct measurements of ITD just noticeable differences (JNDs) were made using a 3 AFC paradigm targeting 70% correct performance on the psychometric function. Stimuli included simple, low-rate electrical pulse trains as well as high-rate pulse trains modulated at 100 Hz. Speech data comparing monaural and binaural performance in noise were also collected with both low, and high update-rate strategies on the research processors. Open-set sentences were presented from directly in front of the subject and competing multi-talker babble noise was presented from the same loudspeaker, or from a loudspeaker placed 90 degrees to the left or right of the subject. RESULTS: For the sound-direction ID task, monaural performance using the clinical devices showed large mean absolute errors of 81 degrees and 73 degrees, with standard deviations (averaged across all 11 loud-speakers) of 10 degrees and 17 degrees, for left and right ears, respectively. Fore bilateral device use at a presentation level of 70 dB SPL, the mean error improved to about 16 degrees with an average standard deviation of 18 degrees. When the presentation level was decreased to 60 dB SPL to avoid activation of the automatic gain control (AGC) circuits in the clinical processors, the mean response error improved further to 8 degrees with a standard deviation of 13 degrees. Further tests with the custom research processors, which had a higher stimulation rate and did not include AGCs, showed comparable response errors: around 8 or 9 degrees and a standard deviation of about 11 degrees for both update rates. The best ITD JNDs measured for this subject were between 350 to 400 microsec for simple low-rate pulse trains. Speech results showed a substantial headshadow advantage for bilateral device use when speech and noise were spatially separated, but little evidence of binaural unmasking. For spatially coincident speech and noise, listening with both ears showed similar results to listening with either side alone when loudness summation was compensated for. No significant differences were observed between binaural results for high and low update-rates in any test configuration. Only for monaural listening in one test configuration did the high rate show a small significant improvement over the low rate. CONCLUSION: Results show that even if interaural time delay cues are not well coded or perceived, bilateral implants can offer important advantages, both for speech in noise as well as for sound-direction identification.
Authors:
Richard Van Hoesel; Richard Ramsden; Martin Odriscoll
Related Documents :
21138539 - New influenza a/h1n1 ("swine flu"): information needs of airport passengers and staff.
14739379 - Accuracy of task recall for epidemiological exposure assessment to construction noise.
21233479 - Preference is biased by crowded facial expressions.
15677219 - Noise and the details of experiments: a reply to poulton.
21553989 - Multisensory integration affects visuo-spatial working memory.
2212289 - English consonant recognition in noise and in reverberation by japanese and american li...
2136749 - Implicit and explicit memory for visual patterns.
21802519 - Print-specific multimodal brain activation in kindergarten improves prediction of readi...
16368629 - The influence of rhythm and personality in the endurance response to motivational async...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Ear and hearing     Volume:  23     ISSN:  0196-0202     ISO Abbreviation:  Ear Hear     Publication Date:  2002 Apr 
Date Detail:
Created Date:  2002-04-15     Completed Date:  2002-10-16     Revised Date:  2006-11-15    
Medline Journal Info:
Nlm Unique ID:  8005585     Medline TA:  Ear Hear     Country:  United States    
Other Details:
Languages:  eng     Pagination:  137-49     Citation Subset:  IM    
Affiliation:
CRC for Cochlear Implant and Hearing Aid Innovation, East Melbourne, VIC, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adult
Cochlear Implants*
Deafness / surgery*
Discrimination (Psychology)*
Humans
Noise / adverse effects*
Reaction Time
Sound Localization / physiology*
Speech Perception / physiology*

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Maturation of mismatch negativity in typically developing infants and preschool children.
Next Document:  Middle ear dynamic characteristics in patients with otosclerosis.