Document Detail

Some aspects of purinergic signaling in the ventricular system of porcine brain.
Jump to Full Text
MedLine Citation:
PMID:  21995888     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Numerous signaling pathways function in the brain ventricular system, including the most important - GABAergic, glutaminergic and dopaminergic signaling. Purinergic signalization system - comprising nucleotide receptors, nucleotidases, ATP and adenosine and their degradation products - are also present in the brain. However, the precise role of nucleotide signalling pathway in the ventricular system has been not elucidated so far. The aim of our research was the identification of all three elements of purinergic signaling pathway in the porcine brain ventricular system.
RESULTS: Besides nucleotide receptors on the ependymocytes surface, we studied purines and pyrimidines in the CSF, including mechanisms of nucleotide signaling in the swine model (Sus scrofa domestica). The results indicate presence of G proteins coupled P2Y receptors on ependymocytes and also P2X receptors engaged in fast signal transmission. Additionally we found in CSF nucleotides and adenosine in the concentration sufficient to P receptors activation. These extracellular nucleotides are metabolised by adenylate kinase and nucleotidases from at least two families: NTPDases and NPPases. A low activity of these nucleotide metabolising enzymes maintains nucleotides concentration in ventricular system in micromolar range. ATP is degraded into adenosine and inosine.
CONCLUSIONS: Our results confirm the thesis about cross-talking between brain and ventricular system functioning in physiological as well as pathological conditions. The close interaction of brain and ventricular system may elicit changes in qualitative and quantitative composition of purines and pyrimidines in CSF. These changes can be dependent on the physiological state of brain, including pathological processes in CNS.
Authors:
Joanna Czarnecka; Katarzyna Roszek; Artur Jabłoński; Dariusz Jan Smoliński; Michał Komoszyński
Related Documents :
1330158 - H3 receptor antagonist, thioperamide, inhibits adrenal steroidogenesis and histamine bi...
2884908 - Inflammatory mediator receptors and asthma.
8391168 - Enhancement by histamine of nmda-mediated synaptic transmission in the hippocampus.
2826998 - Histamine receptors coupled to [3h]camp accumulation in brain: pharmacological characte...
16946718 - Extracellular atp has stimulatory effects on the expression and release of il-6 via pur...
18341708 - Innate recognition of non-self nucleic acids.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-10-13
Journal Detail:
Title:  Acta veterinaria Scandinavica     Volume:  53     ISSN:  1751-0147     ISO Abbreviation:  Acta Vet. Scand.     Publication Date:  2011  
Date Detail:
Created Date:  2011-11-10     Completed Date:  2012-01-12     Revised Date:  2013-06-27    
Medline Journal Info:
Nlm Unique ID:  0370400     Medline TA:  Acta Vet Scand     Country:  England    
Other Details:
Languages:  eng     Pagination:  54     Citation Subset:  IM    
Affiliation:
Biochemistry Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100 Torun, Poland.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adenosine / cerebrospinal fluid,  physiology
Animals
Cerebral Ventricles / physiology*
Nucleotidases / cerebrospinal fluid,  physiology
Receptors, Purinergic P2 / physiology*
Signal Transduction*
Swine / physiology*
Chemical
Reg. No./Substance:
0/Receptors, Purinergic P2; 58-61-7/Adenosine; EC 3.1.3.-/Nucleotidases
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Acta Vet Scand
ISSN: 0044-605X
ISSN: 1751-0147
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2011 Czarnecka et al; licensee BioMed Central Ltd.
open-access:
Received Day: 18 Month: 3 Year: 2011
Accepted Day: 13 Month: 10 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 13 Month: 10 Year: 2011
Volume: 53 Issue: 1
First Page: 54 Last Page: 54
ID: 3213016
Publisher Id: 1751-0147-53-54
PubMed Id: 21995888
DOI: 10.1186/1751-0147-53-54

Some aspects of purinergic signaling in the ventricular system of porcine brain
Joanna Czarnecka1 Email: j_czar@umk.pl
Katarzyna Roszek1 Email: kroszek@umk.pl
Artur Jabłoński2 Email: artur.jablonski@piwet.pulawy.pl
Dariusz Jan Smoliński3 Email: darsmol@umk.pl
Michał Komoszyński1 Email: michkom@chem.umk.pl
1Biochemistry Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100 Torun, Poland
2Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
3Cell Biology Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100 Torun, Poland

Background

Ventricular system is composed of brain structures lined with ependyma and is filled with cerebrospinal fluid (CSF). The composition and physico-chemical properties of CSF depend on the physiological condition of brain. In turn, the composition of CSF influences the function of brain cells. It is well known that cerebrospinal fluid transports signaling molecules and trophic factors generating complex physiological responses due to the activation of their appropriate receptors present on the cells contacting the CSF [1-4]

There are numerous signalization pathways functioning in the brain ventricular system. The most important are GABAergic, glutaminergic and dopaminergic signaling [5-11]. Elements of purinergic signalization system - nucleotide receptors, nucleotidases, ATP and adenosine and their degradation products - are also present in that brain structure [1-4,12-16].

Purines such as adenine and guanine beside committed in neurotransmition and neuromodulation also function as trophic factors [17-19]. Ectopurines are involved in the activation of differentiation and neuritogenesis of precursor cells and neurons. They stimulate synthesis and release of trophic factors in neuronal and glial cells and enhance the effect of growth factors [17,18]. Purines also participate in immunological response due to astrocytes and microglia activation, initiation of inflammatory reactions, apoptosis and necrosis, as well as glial cell proliferation [17,18,20,21]. Extracellular purines bring about signaling or transfer of the information by activating two classes of the receptors: P1-adenosine receptors and P2-nucleotide receptors [19,22]. The activation of P1 and P2 receptors affects metabolic processes, adhesion, motility and proliferation capability of cells [23,24]. The P1 and P2 receptors are colocalized in the most types of cells, where they act antagonistically and regulate the physiological processes [19,22,25-27].

The purines concentration outside the cell depends on the balance between their release from the cells, uptake and extracellular metabolism [19,25]. The purine nucleotides outside the cell are metabolised by ecto-nucleotidases [25,27]. Activity of these enzymes was detected in all examined living organisms: plants, bacteria, animals and human [25].

All known ecto-enzymes controlling the nucleotides concentration belong to several families, differing in origin and mechanism of action. There are four families of nucleotidases: NTPDases (nucleoside triphosphate diphosphohydrolases), NPPases (pyrophosphohydrolases/phosphodiesterases), phosphatases and ecto-5'nucleotidase. The next group of ecto-enzymes involved in regulation of nucleotides concentration outside the cell are nucleotide kinases - the enzymes that transfer the phosphate moiety between nucleotides. Numerous investigations show that ecto-enzymes metabolizing nucleotides outside the cell are involved in termination of nucleotide signaling pathway due to releasing ligands from their receptors [25,28,29]. Additionally, nucleotidases and kinases may produce other secondary messengers like ATP, ADP and adenosine.

According to the previous studies on rodent brain ventricular system, nucleotide receptors P2X7 are localized on the surface of cells lining the cerebral ventricles and cells of choroid plexus [16,30]. P2X2 mRNA has been found in neurons contacting CSF in rat spinal cord [15]. However, the precise role of nucleotide signaling pathway in the ventricular system has not been elucidated so far. Surprisingly, there are no data demonstrating the extracellular purines metabolism within the ventricular system of mammals other than rodents. There is little information concerning the soluble nucleotidases in CSF [16,31], and virtually nothing is known about ependymal membrane-bound nucleotidases.

The aim of our research was to elucidate if all three elements of purinergic signaling pathway, including nucleotide receptors on the ependymocytes surface, purines and pyrimidines in the CSF and mechanisms of nucleotide signal termination, are present in the porcine brain ventricular system.


2. Materials and methods
2.1. Reagents

We used the following reagents: ethanolamine, n-heptane, KCl, HClO4 and EDTA (POCh Gliwice, Poland, p.a. grade), KH2PO4, K2HPO4, tetrabutylammonium hydrogen sulphate (TBA) and isocratic methanol (Baker Phillipsburg, USA, HPLC grade). The following nucleotides and nucleosides: Adenosine-5'-triphosphate, adenosine-5'-diphosphate, adenosine-5'-monophosphate, adenosine, guanosine-5'-triphosphate, guanosine-5'-diphosphate, uridine-5'-triphosphate, uridine-5'-diphosphate (98-99% purity, Sigma-Aldrich, Europe) were used as substrates for enzyme activity determination and as HPLC standards.

For molecular biology analyses: First Strand cDNA Synthesis Kit (Fermentas, Lithuania), primary rabbit antibodies - anti-P2X7, anti-P2X2 and anti-P2Y2 (Sigma-Aldrich, Europe), Alexa Fluor 488 secondary anti-rabbit antibody (Molecular Probes, Leiden, Holland) were used.

Primers were synthesized in DNA Sequencing and Oligonucleotide Synthesis Lab (Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland).

2.2. Materials

Cerebrospinal fluids (CSFs) of healthy swines were collected in Department of Swine Diseases, National Veterinary Research Institute (Puławy, Poland) following ethical procedures laid by ethical committee of the university. CSFs were centrifuged 10 min at 20 000 × g to discard the morphotic elements. The supernatant obtained was immediately used to determine enzymatic activity. Portions of the CSFs were cooled to 4°C, frozen and then stored at -80°C. After thawing the CSFs were centrifuged and used to determine nucleotide concentrations.

Porcine brains collected immediately after slaughter, were placed in cold (4°C) isotonic buffer A (35 mM Tris-HCl pH 7.4, 250 mM sucrose, 10 mM glucose) with 4 mM MgCl2 and 2 mM CaCl2. The tissue from lateral ventricle was cut into slices (1 cm diameter, 0.785 cm2) and used to determine membrane bound activity of enzymes from ependymal cells. The fragments of lateral ventricle wall were cut with the use of sharp steel tubing and immobilized in alginate with the ependymal layer directed upside. These fragments of ventrical wall were used to immunohistochemical localisation of nucleotide receptors as well as for expression analysis of nucleotidases.

2.3. Qualitative and quantitative analysis of purines and pyrimidines

The already established method of solid phase extraction (SPE) of purines and pyrimidines [32] and high-performance liquid chromatography (HPLC) was and used in the experiments.

2.4. Enzymatic activity determination

Nucleotidases assay in CSFs was carried out in incubation mixture composed of: isotonic buffer A with 3 mM Mg2+ or 2 mM Ca2+, 2.5 mM levamisol (alkaline phosphatase inhibitor) [33], 0.1 mM dipiridamol (adenosine deaminase inhibitor) [34], and 1 or 2 mM nucleotide (ATP, ADP, AMP) as substrate. To distinguish nucleotidases 0.1 mM suramine (NTPDase inhibitor [35]) or 10 μM Ap5A (NPPase and adenylate kinase inhibitor [36,37]) were added to incubation mixture.

Adenylate kinase assay in CSFs was carried out in isotonic buffer A containing 3 mM Mg2+, 2.5 mM levamisol, 0.1 mM dipiridamol, 0.1 mM suramine (buffer A) and 2 mM ADP as substrate.

Enzymatic reactions were initiated with 20 μl CSF added to 20 μl of pre-warmed incubation mixture. The samples were incubated for 15-120 min at 37°C and reaction was terminated with 20 μl of 1M cold HClO4. All tested samples were neutralized with 1M KOH, delipidated by shaking with n-heptane (1:5, v/v), centrifuged and analysed for qualitative and quantitative analysis of purines concentration.

Determination of ependymal ecto-enzymes activity was carried out in situ on the tissue surface. The tissue slices were incubated for 10-30 min with appropriate incubation mixtures at 37°C. The reaction was terminated by adding 50 μl of incubation mixture to 50 μl of 1M cold HClO4. All tested samples were prepared for the analysis of purines concentration as described above.

The effect of divalent ions influence on the activity of porcine brain ventricular system enzymes was determined in the presence of 2 mM Ca2+ and 3 mM Mg2+.

The pH optimum of enzymes metabolizing nucleotides in ventricular system was carried out in pH range between 6.0 to 9.0, in isotonic conditions and in the presence of appropriate divalent ions and inhibitors blocking the enzymatic activities of other enzymes.

2.5. Protein assay

Protein concentration was determined by the method of Bradford [38] using bovine serum albumin as a standard.

2.6. Western blotting

After completing SDS-PAGE and electrophoretic transfer onto the nitrocellulose, the membrane was blocked in 3% BSA in TBS for 1 hour. The membrane was then incubated for 2 hours at room temperature with the rabbit polyclonal primary antibody (anti-NTPDase1 (CD39) antibodies, anti-apyrase antibodies, anti-NTPDase5 antibodies or anti-NPPase3 antibodies were used respectively, depending on the experiment, all the antibodies were purchased from Santa Cruz Biotechnology, Inc.). After washing with TBS, the membrane was incubated with the secondary antibody (anti-rabbit IgG Alkaline Phosphatase Conjugate) for 2 hours at room temperature. After removing the antibody, the alkaline phosphatase reagents (BCIP/NBT) were added.

2.7. NTPDases and NPPases expression analysis in ependymal cells

Total RNA was isolated from ependymocytes obtained by trypsynization of the ependymal surface with 0.25% trypsin and from fragments of brain tissue (positive control) frozen in liquid nitrogen. The reverse transcription was carried out with the use of First Strand cDNA Synthesis Kit. The primer sequences were designed as shown in Table 1.

The amplified cDNA fragments were electrophoresed in 1% agarose gel, stained with ethidium bromide and photographed under an ultraviolet light transilluminator.

2.8. Immunolocalization of nucleotide receptors on the surface of porcine brain ventricle lining

Fragments of intact ependymal surface obtained as indicated in section 2.2, were incubated with primary antibodies: anti-P2X7, anti-P2X2 and anti-P2Y2 (1 hour at 7°C) and subsequently with secondary antibodies conjugated with Alexa Fluor 488 (1 hour at 7°C). Preparations were analysed using confocal laser scanning microscope (Nikon Eclipse TE 300 CLSM) with Plan Apochromat 60 × objective. The Alexa Fluor 488 excitation with helium-neon laser (λ = 543 nm) resulted in red fluorescence of the fluorophore. The images were photographed with EZ 2000 Viewer for Confocal Microscope PCM 2000.


3. Results
Nucleotides and nucleosides of porcine brain ventricular system

The cerebrospinal fluids (CSF) of seven healthy swines were used for qualitative and quantitative analyses of purines and pyrimidines. The selected animals were matched in respect to equal breed, age and farming conditions.

In porcine CSF we identified 8 purines and pirymidynes: ATP, ADP, AMP, Ado, GTP, GDP, UTP and UDP (Table 2). The values of standard deviation and median values similar to arithmetical mean are shown. We found that guanine nucleotides concentrations in analyzed CSF are significantly higher than adenine nucleotides concentrations. The [GTP]/[ATP] ratio is about 8:1 whereas the [GDP]/[ADP] ratio is 6:1. UTP was present only in 4 and UDP in 6 samples of analyzed CSF.

Immunochemical localization of nucleotide receptors on the surface of porcine brain ependyma

We confirmed the presence of nucleotide receptors P2X7, P2X2 and P2Y2 in the ventricular system of porcine brain. These experiments were conducted on the unfixed samples of ependymal layer that significantly lowered the auto-fluorescence of brain tissue. P2X7 receptors are the most abundantly expressed nucleotide receptors on the ependymal cells (Figure 1b) whereas P2X2 receptors are less frequent and positive signals of anti-P2X2 antibodies are concentrated in specific regions of ependyma (Figure 1c). The widely expressed P2Y2 receptor in brain tissue is present on ependymal cells in streaks forming clusters (Figure 1d). The streaks of ependymal cells had been previously observed under electron microscope [39].

The enzymes acting in nucleotides metabolism of porcine brain ventricular system

Nucleotides in CSF were hydrolysed by enzymes localized on the ependymal surface (ecto-nucleotidases) as well as by soluble enzymes present in CSF (exonucleotidases). These enzymes efficiently metabolised purine tri- and diphosphonucleotides (ATP > ADP > GTP > GDP). We also found the activity of 5'nucleotidase (Table 3) despite the fact that purine monophosphonucleotides and pyrimidynes were hydrolysed less efficiently.

The kinetical analyses (inhibitors, ions and pH influence on the enzymes activity), Western Blotting and gene expression analyses helped to identify the nucleotidases present in brain ventricular system.

Ecto-enzymes associated with the ependymal cells surface and exo-enzymes present in CSF differed in their optimum pH or sensitivity to divalent ions. The different reaction products suggest that analysed enzymes belong to two distinct classes of hydrolases and kinases. The results are summarized in Table 4.

At pH 6.5 enzymes of CSF and ependymal ecto-enzymes use ADP to synthesize ATP. This reaction was activated by Mg2+ ions, whereas Ap5A (kinase inhibitor) efficiently inhibited ATP synthesis, suggesting that nucleotide kinases are present in porcine CSF and on the surface of porcine brain ventricle lining.

Kinetical analyses of ependymal ecto-hydrolases

The values of optimal pH conditions for ATP to ADP hydrolysis at pH 7.5 were distinct from the optimal pH value 8.5 required for ATP to AMP hydrolysis. The ATP hydrolysis by ependymal ecto-enzymes at pH 7.5 was efficiently inhibited by suramine (NTPDases inhibitor) whereas Ap5A has no inhibitory effect. On the other hand, ATP to AMP hydrolysis at pH 8.5 was strongly inhibited by Ap5A (NPPases inhibitor).

ADP to AMP hydrolysis was most efficient at pH 7.5 and the hydrolytic activity decreased in the presence of suramine. These results indicate that ecto-NTPDase2, ecto-NPPase and enzyme ecto-NTPDase5, 6-like are the most active enzymes on the surface of ependymal cells.

Kinetical analyses of exohydrolases in cerebrospinal fluid

Further we found exo-enzymes in CSF that catalysed ATP to ADP hydrolysis at pH 7.0. ATP hydrolysis at this pH was efficiently inhibited by suramine and Ap5A. ATP to AMP was hydrolysed less efficiently - this process constituted only 20% of ATP to ADP hydrolysis.

The inhibitory effect of Ap5A on ADP to AMP hydrolytic activity was stronger in the presence of magnesium (64%) than calcium ions (40%). However, the inhibitory effect of suramine was stronger in the presence of calcium (49%) than magnesium ions (17%). These results indicate presence of soluble exoenzyme NTPDase2 activity in porcine CSF. The differences in the susceptibility of ADP to AMP hydrolysis to inhibitors, observed in the presence of Mg2+ i Ca2+, indicate that the enzymes with NPPase-like activity (strong inhibition with Ap5A in presence of Mg2+ [36,37]) and NTPDase5 or NTPDase6 activity (strong inhibition with suramine in presence of Ca2+ [35]) are present in CSF of swine.

Molecular identification of brain ventricular system nucleotidases

The enzymatic proteins present in porcine CSF were detected and identified. The results of SDS-PAGE electrophoresis and Western Blot analyses are shown in Figure 2.

The presence of enzymes from NTPDase and NPPase families in porcine CSF was confirmed by their molecular mass (Figure 2A) as well as Western Blotting analyses. However, the precise identification of the enzymes was impossible. The molecular weight of proteins interacting with applied anti-NTPDases primary antibodies was about 64 kDa, 62 kDa and 58 kDa respectively (Figure 2B, D). It is consistent with the molecular weight of soluble NTPDases of blood vessels [25,40] and apyrase of A. thaliana (Figure 2C). The proteins interacting with anti-NPPases antibodies reflected molecular weight of about 52 kDa and 58 kDa (Figure 2D, E). These data are in good agreement with molecular weight of soluble NPPases found in literature [41-48].

The above experiments on gene expression indicate, that genes coding the soluble NPPase3 (Figure 3.1E), NTPDase5 (Figure 3.3E) and NTPDase6 (Figure 3.5E) as well as NTPDase2 (Figure 3.2E) are expressed in ependymal cells.

PCR products obtained with the use of primers for NTPDase5 from porcine brain cells and ependymal cells were different in respect of their size (Figure 3.3), suggesting distinct splicing of NTPDase5 in ependymal cells than its splicing in the brain.

Our results show that there is no NTPDase1 expression in ependymal cells of porcine brain (Figure 3.5E), whereas it is expressed in brain (positive control, Figure 3.5M). The absence of NTPDase1 expression in ependymal cells may constitute the negative control used for the identification of these cells.

The presence of NTPDase3 in ventricular system of porcine brain cannot be confirmed by PCR reactions. However, in the literature there are data concerning the NTPDase3 expression in mammalian and human brain [49,50].


4. Discussion

The results presented in this paper for the first time demonstrate the presence of all three elements of purinergic signaling in the swine (Sus scrofa domestica) brain ventricular system. Several previous studies showed the correlation between concentration of nucleotides, nucleosides and purine/pyrimidine bases in extracellular spaces of brain tissue and cerebrospinal fluid [1-4,12-14]. However, previous experiments on ventricular system metabolism were conducted in rodents [5,15,39,51-56]. Rodents brain tissue retained quite well functioning repair processes because of high differentiating potential of neuronal stem cells present in the subventricular zone [57,58]. In the contrary to other mammalian brains, the brain of rodents responds differently to the non-physiological conditions, like ischemia or hypoxia, that damage cells of the central nervous system [54,55,59].

Nucleotides and nucleosides of porcine brain ventricular system

The presence of ATP, ADP and other tri- and diphosphonucleotides in human CSF was indicated for the first time by Czarnecka et al. [32]. The rabbit CSF also possesses a wide range of various compounds including adenosine, guanosine, uridine, cytidine, inosine, tymidine, deoxycytidine, deoxyuridine, hipoxanthine, xanthine and uric acid. The concentration of these compounds was tested in normal physiological conditions, during starving and liver damage [60,61]. Similarly, rodents were also shown to carry nucleotides in their CSF [60,61].

Our experiments indicated that similar to the concentration of purines in human tissue fluids [1-4,12-14] median values of ATP, ADP, AMP, GTP, GDP, UTP, UDP and adenosine in swine CSF ranged from 1 to 2 μM.

We further found that concentrations of guanine nucleotides in analyzed CSF are significantly (about 8 times) higher than adenine nucleotides concentrations. The high concentrations of guanine nucleotides in porcine CSF are probably due to the absence of ecto- and exo-enzymes capable of specific guanine nucleotides hydrolysis. The maintaining of high level of guanine nucleotides suggests an important role for these nucleotides in ventricular system physiology. Though the precise function of guanine nucleotides is still unclear, however. More recent studies suggest the participation of GTP and guanosine in metabotropic (P2Y) receptors activation during regulation of ATP and adenosine exocytosis [17,18,62-66]. Additionally, the latest data indicate that guanine nuclotides can act as trophic agents [18].

The correlation between concentration of nucleotides, nucleosides and purine/pyrimidine bases in extracellular spaces of brain tissue on one hand and in cerebrospinal fluid on the other, suggests that changes in CSF composition may reflect changes in the brain condition [1-4,12-14]. Numerous authors claim that brain hypoxia results in ATP degradation and in signifficant increase of degradation products in CNS cells. Some of the products, like adenosine, can be released in cerebrospinal fluid [17,18,67-69]. On the other hand, the changes in the CNS cells metabolism can induce intensified exocytosis of ATP and ADP [19,68]. Damaged brain cells constitute another source of purines and pyrimidines [19].

Nucleotide receptors

The nucleotide receptors were found in all organs and tissues examined so far [19]. In rodents ventricular system their existence was confirmed immunochemically [15,16]. The PCR method allowed to detect mRNA of nucleotide receptors in cells of choroid plexus and spinal cord neurons that come in contact with CSF in rodents [15,70]. However, these studies did not successfully determine the exact amount and localization of these receptors on the cell surface. The results presented in this paper indicate that nucleotide receptors P2X2, P2X7 and P2Y2 are expressed on the ependymocytes of lateral ventricle of porcine brain. Their amount and distribution has been found to be diverse. The P2X7 receptors connected with inflammatory reactions and pain [71] were predominantly expressed on the analysed tissue fragments. The density of P2X2 i P2Y2 receptors was low, whereas P2Y receptors were distributed irregularly in form of streaks and P2X receptors were scattered on the ependymocytes surface. The presence of nucleotide receptors in the areas contacting with CSF suggests the possibility of communication between ependymal cells and cerebrospinal fluid via nucleotides. Furthermore, high density of P2X7 receptors indicates that ventricular system plays a key role in inflammatory processes in central nervous system since in recent years, the role of ATP and P2X7 receptors in these processes has been recognised [72-74]. It was also found that injury inflicted on rat brain by heme injection resulted in increased interleukine concentration in CSF [75]. We detected the elevated concentration of ATP in CSF of patients with brain stroke (unpublished data). The results discussed above confirm the thesis about cross-talking between brain and ventricular system functioning in physiological as well as pathological conditions.

Nucleotide receptors, like all the receptors of neurotransmitters in the ventricular system, may also be involved in the regulation of cilliae movement [5-11], important for CSF circulation.

The enzymes acting in nucleotides metabolism of porcine brain ventricular system

The enzymes associated with ependyma and CSF hydrolysed adenosine tri- and diphosphonucleotides effectively while guanine nucleotides were not hydrolysed as efficiently and pyrimidynes were not metabolised at all. Similar substrate specificity was found for soluble nucleotidases in rat CSF [25]. The nucleotidases in ventricular system, like the majority of so far characterised NTPDases [EC 3.6.1.5] and NPPases [EC 3.6.1.9], acted optimally in alkaline conditions at pH 7.5-8.0 [25,29,42-49]. These enzymes were activated by divalent ions, preferably by Ca2+ and Mg2+. Moreover, the susceptibility to inhibitors of ecto-nucleotidases and kinases (suramine and Ap5A) and alkaline phosphatases (levamisole) indicates that ecto-NTPDases as well as NPPases are active on the ependymocytes. We also realize the presence of nucleotide kinases in porcine CSF and on the surface of porcine brain ventricle lining. Inconsiderable influence of levamisole on nucleotides hydrolysis (data not shown) excludes the presence of membranous alkaline phosphatases. In summary, ecto- and exonucleotidases from NTPDase and NPPase family as well as adenylate kinase participate in nucleotides metabolism in ventricular system of porcine brain.

The adenylate kinase (AK), ectoNTPDase2, NPPase and 5'-nucleotidase activities were demonstrated on the surface of ependymal cells (Figure 4). Kinetical analyses failed to verify activity of NTPDase1 and/or 3. The PCR method also confirmed the absence of NTPDase1 in ventricular system of swine. Unexpectedly, in Western Blotting anti-NTPDase1 antibodies reacted with protein of molecular mass characteristic for soluble NTPDases, which allowed us to conclude that they reacted non-specifically with NTPDase5 protein.

In porcine CSF we also detected the activity of NPPase and nucleotidases similar to NTPDase2 and NTPDase 5 or 6 (Figure 4). NPPase of CSF is inhibited by Ap5A. The enzyme with similar properties was found in rat CSF [76]. Western blot analysis indicated that the proteins interacting with anti-NPPases antibodies have molecular weight of about 52 kDa and 58 kDa. These data are in accordance with molecular weight of soluble NPPases given in literature [41-48]. One of these proteins is NPPase3, analogous to ectoNTPDases in blood vessels [76], the difference in the molecular weight (about 6 kDa) suggests that the second protein can be NPPase3 that might have been detached from the membrane and released to CSF.

We also detected the soluble form of NTPDase hydrolysing ATP and less efficiently ADP, which is inhibited by suramine and not by Ap5A. However, the soluble NTPDases described so far had rather high specificity to diphosphonucleosides and low specificity to triphosphonucleosides [40,77,78]. We also found the adenylate kinase activity in cerebrospinal fluid of swine. We detected low 5'-nucleotidase and adenosine deaminase activities in porcine CSF.

Mainly neuronal NTPDases are involved in release of the agonists from nucleotide receptors [25,29,50]. The end product of extracellular ATP and ADP metabolism in ventricular system is always AMP. Blood vessel NTPDase1, 2 and 3 activity and neuronal ecto-NTPDases also produced AMP [25,29,50]. In opposition to that, we did not find NTPDase 1 and 2 in ventricular system. The product of the above reactions - extracellular AMP is further hydrolysed by ependymal 5'-nucleotidase to adenosine that is known for its neuroprotective functions [67,69]. The activity of 5'-nucleotidase was found both on ependymal surface and CSF, however in CSF the hydrolysis of AMP is due to unspecific phosphatase activity.

The results of previous studies suggested that NTPDases participate in CSF nucleotides metabolism [25,50]. Nucleotidase activity using di- and triphosphonucleosides was detected in rat CSF, however the precise identification of these NTPDases was imposible [76]. There is little information about participation of other enzymes, for example exo-nucleotidases, in nucleotide metabolism. Previous experiments indicated the presence of NPPase2 and 3 on chondroid plexus cells [79].

Extracellular nucleotides including ATP, ADP, UTP and UDP are signaling molecules involved in the regulation of metabolic processes throughout the nervous system [26,27]. In recent years the particular attention has been paid to the role of ATP and adenosine in inflammatory reactions. ATP is considered to be specific "danger signal". Released to the extracellular space ATP informs about pathological conditions and damage of cells and activates immunological response [80]. The presented results not only confirmed the presence of all elements of purinergic signaling in the mammalian brain ventricular system, but also demonstrated numerous P2X7 receptors expressed on the surface of ependymal cells. These observations suggest that the ventricular system is responsible for initiating the inflammation reactions triggered off by the damage of brain cells. Relevance of these observations is elevated due to the fact that increased concentration of ATP, ADP and GTP in CSF of patients with brain stroke may be connected with higher death risk (unpublished data).


5. Declaration of competing interests

The authors declare that they have no competing interests.


6. Authors' contributions

JC carried out the biochemical analyses and molecular studies and drafted the manuscript, KR participated in the biochemical analyses and drafted the manuscript, AJ have been involved in the collection and preparation of animal material, DS carried out the immunochemical experiments, MK contributed conception and design of the study, analysis and interpretation of the data and drafting the manuscript. All authors read and approved the final manuscript.


7. Acknowledgements

This research was supported by project "Step into the Future" granted by Marshal of The Kuyavian-Pomeranian Voivodeship.


References
Rodrigues-Nunez A,Camina F,Lojo S,Rodrigues-Segade S,Castro-Gago M,Concentration of nucleotides, nucleosides, purine bases and urate in cerebrospinal fluid of children with meningitisActa PeadiatrYear: 19938284952
Schmidt H,Siems WG,Grune T,Grauel EL,Concentration of purine compounds in the cerebrospinal fluid of infants suffering from sepsis, convulsion and hydrocephalusJ Perinat MedYear: 19952316717410.1515/jpme.1995.23.3.1678568608
Holst H,Sollevi A,Increased concentration of hypoxanthine in human central cerebrospinal fluid after subarachnoid haemorrhageActa NeurochirYear: 1983775259
Stover JF,Lowitzsch K,Kempski OS,Cerebrospinal fluid hypoxanthine, xanthine and uric acidlevels may reflect glutamate - mediated exitotoxicity in different neurological diseasesNeurosci LettYear: 1997238252810.1016/S0304-3940(97)00840-99464646
Tang FR,Sim MK,Metabotropic glutamate receptor subtype alfa (mGluR1alfa) immunoreactivity in ependymal cells of rat caudal medulla oblongata and spinal cordNeurosci LettYear: 199722517718010.1016/S0304-3940(97)00220-69147399
Yanase H,Shimizu H,Yamada K,Iwanaga T,Cellular Localization of the Diazepam Binding Inhibitor in Glial Cells with Special Reference to Its Coexistence with Brain-type Fatty Acid Binding ProteinArch Histol CytolYear: 200265273610.1679/aohc.65.2712002608
Rating D,Siemes H,Löscher W,Low CSF GABA concentration in children with febrile convulsions, untreated epilepsy, and meningitisJ NeurolYear: 19832302172510.1007/BF003136976198481
Weiner M,Speciale S,Risser R,Kramer G,Petty F,Cerebrospinal fluid and plasma gamma-aminobutyric acid in Alzheimer's diseaseBiol PsychiatryYear: 19964093393410.1016/S0006-3223(96)00305-88896784
Jiménez-Jiménez FJ,Molina JA,Gómez P,Vargas C,de Bustos F,Benito J,Tallón-Barranco A,Ortí-Pareja M,Gasalla T,Arenas J,Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer's diseaseJ Neural TransmYear: 199810526927710.1007/s0070200500569660105
Tomé M,Moreira E,Pérez-Fígares JM,Jiménez AJ,Presence of D1- and D2-like dopamine receptors in the rat, mouse and bovine multiciliated ependymaJ Neural TransmYear: 200711498399410.1007/s00702-007-0666-z17458496
Rodríguez S,Vio K,Wagner C,Barría M,Navarrete EH,Ramírez VD,Pérez-Fígares JM,Rodríguez EM,Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner's fiber complex by maternal delivery of antibodiesExp Brain ResYear: 1998128278290
Rodriguez-Nunez A,Neuron-specific enolase, nucleotides, nucleosides, purine bases, oxypurines and urid amid concentration in cerebrospinal fluid of children with meningitisBrain DevYear: 20032510210610.1016/S0387-7604(02)00160-212581805
Rodríguez-Núñez A,Camiña F,Lojo S,Rodríguez-Segade S,Castro-Gago M,Purine metabolites and pyrimidine bases in cerebrospinal fluid of children with simple febrile seizuresDev Med Child NeurolYear: 199133908111743415
Castro-Gago M,Camiña F,Lojo S,Rodríguez-Segade S,Rodríguez-Núñez A,Concentrations of purine nucleotides and purine and pyrimidine bases in cerebrospinal fluid of neurologically healthy childrenEur J Clin Chem Clin BiochemYear: 19923076151489848
Stoeckel ME,Uhl-Bronner S,Hugel S,Veinante P,Klein MJ,Freund-Mercier MJ,Schlichter R,Cerebrospinal fluid cocntacting neurons in the rat spinal cord, a γ-aminobutiric acidergic system expressing the P2X2 subunit of purynergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic studyJ Comp NeurolYear: 200345715917410.1002/cne.1056512541316
Collo G,Neidhart S,Kawashima E,Kosco-Vilbois M,North RA,Buell G,Tissue Distribution of the P2X7 ReceptorNeuropharmYear: 1997361277128310.1016/S0028-3908(97)00140-8
Rathbone M,Middlemiss P,Gysbers J,Andrew C,Herman M,Reed J,Ciccarelli R,Iorio P,Caciagli F,Trophic effect of purines in neurons and glial cellsProg NeurobiolYear: 19995966369010.1016/S0301-0082(99)00017-910845757
Ciccarelli R,Ballerini P,Sabatino G,Rathbone MP,D'Onofrio M,Caciagli F,Iorio P,Involement of astrocytes in purine mediated reparative processes in the brainInt J Devl NeurosciYear: 200119359414
Ralevic V,Burnstock G,Receptors for purines and pyrimidinesAm J Pharmacol Exp TherYear: 199850413492
Jacobson KA,Hoffmann C,Cattabeni F,Abbracchio MP,Adenosine-induced cell death: evidence for receptor-mediated signalingApoptosisYear: 1999419721110.1023/A:100966670730714634282
Schubert P,Ogata T,Marchini C,Ferroni S,Rudolphi K,Protective mechanisms of adenosine in neurons and glial cellsAnn N Y Acad SciYear: 1999825110
Burnstock G,Development and perspectives of the purinoceptors conceptJ Auton PharmacolYear: 19961629530210.1111/j.1474-8673.1996.tb00039.x9131402
Burnstock G,Knight GE,Cellular distribution and functions of P2 receptor subtypes in different systemsInt Rev CytolYear: 2004240301304
Harden TK,Lazarowski ER,Boucher RC,Release, metabolism and interconversion of adenine and uridine nucleotides: Implications for G protein-coupled P2 receptor agonist selectivityTrends Pharmacol SciYear: 19971843469090307
Zimmermann H,Extracellular purine metabolismDrug Dev ResYear: 19963933735210.1002/(SICI)1098-2299(199611/12)39:3/4<337::AID-DDR15>3.0.CO;2-Z
Zimmermann H,Signalling via ATP in the nervous systemTrends NeurosciYear: 19941742042510.1016/0166-2236(94)90016-77530880
Burnstock G,Purinergic signalling: past, present and futureBraz J Med Biol ResYear: 2009423810.1590/S0100-879X200800500003718853040
Koziak K,CD39 (NTPDase 1) - Characteristics of the enzyme and its role in regulating coagulation and inflammation processesPost Biol KomYear: 2002291525
Zimmermann H,Braun N,Heine P,Kohring K,Marxen M,Sévigny J,Robson SC,VanDuffel L, Lemmens RThe molecular and functional properties of E-NTPDase1, E-NTPDase2 and ecto-5'-nucleotidase in nervous tissueEcto-ATPases and related ectonucleotidasesYear: 2000Maastricht: Shaker Publishing BV920
Xiang Z,Burnstock G,Expression of P2X receptors in rat choroid plexusNeuroreportYear: 20051690390710.1097/00001756-200506210-0000615931059
Oses J,Viola G,de Paula Cognato G,Júnior V,Hansel G,Böhmer A,Leke R,Bruno A,Bonan C,Bogo M,Portela L,Souza D,Sarkis J,Pentylenetetrazol kindling alters adenine and guanine nucleotide catabolism in rat hippocampal slices and cerebrospinal fluidEpilepsy ResYear: 20077510411110.1016/j.eplepsyres.2007.04.00617544258
Czarnecka J,Cieślak M,Komoszyński M,Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluidJ Chromatogr B Analyt Technol Biomed Life SciYear: 2005822859010.1016/j.jchromb.2005.05.02615993662
Van Belle H,Alkaline phosphatase. Kinetics and inhibition by levamisole of purified isoenzymes from humansClin ChemYear: 1976229729766169
Wu PH,Phillis JW,Uptake of Adenosine by Isolated Rat Brain CapillariesJ NeurochemYear: 19823868769010.1111/j.1471-4159.1982.tb08686.x6977017
Kukulski F,Komoszyński M,Purification and characterization of NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) from porcine brain cortex synaptosomesEur J BiochemYear: 200427034473454
Cauwenberghs S,Feijge M,Hageman G,Hoylaerts M,Akkerman JW,Curvers J,Heemskerk J,Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formationTransfusionYear: 2006461018102810.1111/j.1537-2995.2006.00837.x16734820
Kurebayashi N,Kodama T,Ogawa Y,P1, P5-Di(Adenosine-5')Pentaphosphate(Ap5A) as an Inhibitor of Adenylate Kinase in Studies of Fragmented Sarcoplasmic Reticulum from Bullfrog Skeletal MuscleJ BiochemYear: 1980888718766252207
Bradford MM,A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye bindingAnal BiochemYear: 19767224825410.1016/0003-2697(76)90527-3942051
Sato K,Kubota T,Ishida M,Yoshida K,Takeuchi H,Handa Y,Immunohistochemical and ultrastructural study of chordoid glioma of the third ventricle: its tanycytic differentiationActa NeuropatholYear: 200310617618010.1007/s00401-003-0713-212748871
Osesa JP,Cardosoa CM,Albuquerque GR,Barreto KI,Rucker B,Ribas FC,Wink MR,Bonan CD,Battastini AMO,Freitas Sarkis JJ,Soluble NTPDase: An additional system of nucleotide hydrolysis in rat blood serumLife SciYear: 2004743275328410.1016/j.lfs.2003.11.02015094327
Sakagami H,Aoki J,Natori Y,Nishikawa K,Kakehi Y,Natori Y,Arai H,Biochemical and Molecular Characterization of a Novel Choline-specific Glycerophosphodiester Phosphodiesterase Belonging to the Nucleotide Pyrophosphatase/Phosphodiesterase (NPP) familyJ Biol ChemYear: 200523130
Zimmermann H,Extracellular metabolism of ATP and other nucleotidesNaunyn-Schmiedeberg's Arch PharmacolYear: 200036229930910.1007/s002100000309
Novak I,ATP as a Signaling Molecule: the Exocrine FocusNews Physiol SciYear: 200318121712531926
Finger TE,Danilova V,Barrows J,ATP signaling is crucial for communication from taste buds to gustatory nervesScienceYear: 20053101495149910.1126/science.111843516322458
Lazarowski ER,Boucher RC,Kendall HT,Mechanisms of Release of Nucleotides and Integration of Their Action as P2X- and P2Y-Receptor Activating MoleculesMol PharmacolYear: 20036478579510.1124/mol.64.4.78514500734
Godinga JW,Grobbenb B,Slegers H,Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase familyBiochim Biophys ActaYear: 2003163811912757929
Bollen M,Gijsbers R,Ceulemans H,Stalmans W,Stefan C,Nucleotide pyrophosphatase/phosphodiesterase on the moveCrit Rev Biochem Mol BiolYear: 20003539343210.1080/1040923009116924911202013
Yano Y,Hayashi Y,Sano K,Shinmaru H,Kuroda Y,Yokozaki HI,Yoon S,Kasuga M,Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-3 (E-NPP3/CD203c/PD-Iβ/B10/gp130RB13-6) in human colon carcinomaInt J Mol MedYear: 20031276376614533006
Fausther M,Lecka J,Kukulski F,Lévesque SA,Pelletier J,Zimmermann H,Dranoff JA,Sévigny J,Cloning, purification and identification of the liver canalicular ecto-ATPase as NTPDase8Am J Physiol Gastrointest Liver PhysiolYear: 20069785795
Simon C,Robson SC,Sévigny J,Zimmermann H,The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significancePurinergic SignalYear: 2006240943010.1007/s11302-006-9003-518404480
Silva-Alvarez C,Carraro M,Balmaceda-Aguilera C,Pastor P,Angeles GM,Reinicke K,Aguayo L,Molina B,Cifuentes M,Medina R,Nualart F,Ependymal cell differentiation and GLUT1 expression is synchronous process in the ventricular wallNeurochem ResYear: 2005301227123610.1007/s11064-005-8794-z16341584
Oshio K,Binder D,Yang B,Schecter S,Verkman A,Manley G,Expression of aquaporin water channels in mouse spinal cordNeuroscienceYear: 200412768569310.1016/j.neuroscience.2004.03.01615283967
Steiniger B,van der Meide PH,Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferonJ NeuroimmunolYear: 19881911111810.1016/0165-5728(88)90040-93135295
Hauwel M,Furon E,Canova C,Griffiths M,Neal J,Philippe P,Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, "protective" glial stem cells and stromal ependymal cellsBrain Res RevYear: 20054822023310.1016/j.brainresrev.2004.12.01215850661
Li Y,Chen J,Chopp M,Cell proliferation from ependymal, subependymal and choroid plexus cell in response to stoke in ratsJ Neurol SciYear: 200219313714610.1016/S0022-510X(01)00657-811790394
Verleysdonka S,Kistnera S,Pfeiffer-Guglielmia B,Wellarda J,Lupescub A,Laskec J,Langb F,Rappd M,Hamprechta B,Glycogen metabolism in rat ependymal primary cultures: Regulation by serotoninBrain ResYear: 20051060899910.1016/j.brainres.2005.08.04516202983
Gotts J,Chesselet M,Mechanisms of subventricular zone expansion after focal cortical ischemic injuryJ Comp NeurolYear: 200525201214
Ong J,Plane J,Parent J,Silverstein F,Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal ratPediatr ResYear: 20055860060610.1203/01.PDR.0000179381.86809.0216148080
Quinones-Hinojosa A,Sanai N,Soriano-Navarro M,Gonzalez-Perez O,Mirzadech Z,Gil-Perotin S,Romero-Rodriguez R,Berger M,Garcia-Verdugo JM,Alvarez-Buylla A,Cellular composition and cytoarchitecture of the adult human Subventricular Zone: a niche of neural stem cellsJ Comp NeurolYear: 200649441543410.1002/cne.2079816320258
Eells J,Spector R,Determination of ribonucleosides, deoxyribonucleosides, and purine and pyrimidine bases in adult rabbit cerebrospinal fluid and plasmaNeurochem ResYear: 198381307132010.1007/BF009640006656989
Eells J,Spector R,Huntoon S,Nucleoside and oxypurine homeostasis in adult rabbit cerebrospinal fluid and plasmaJ NeurochemYear: 1984421620162410.1111/j.1471-4159.1984.tb12751.x6726230
Soares F,Schmidt A,Farina M,Frizzo M,Tavares R,Portela L,Lara D,Souza D,Anticonvulsant effect of GMP depends on its conversion to guanosineBrain ResYear: 2004100518218610.1016/j.brainres.2004.01.05315044076
Deutsch S,Long K,Rosse R,Mastropaolo J,Eller J,Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation, and neurotransmission in Lesch-Nyhan syndromeClin NeuropharmacolYear: 200528283710.1097/01.wnf.0000152043.36198.2515711436
Frizzo M,Antunes Soares F,Dall'Onder L,Lara D,Swanson R,Souza D,Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptakeBrain ResYear: 2003972848910.1016/S0006-8993(03)02506-X12711081
Schmidt A,Lara D,de Faria Maraschin J,da Silveira Perla A,Onofre Souza D,Guanosine and GMP prevent seizures induced by quinolinic acid in miceBrain ResYear: 2000864404310.1016/S0006-8993(00)02106-510793184
Schmidt A,Böhmer A,Leke R,Schallenberger C,Antunes C,Pereira M,Wofchuk S,Elisabetsky E,Souza D,Antinociceptive effects of intracerebroventricular administration of guanine-based purines in mice: evidences for the mechanism of actionBrain ResYear: 20081234505818708036
Latini S,Pedata F,Adenosine in the central nervous system: release mechanisms and extracellular concentrationsJ NeurochemYear: 20017946348411701750
Moatassim C,Dornand J,Mani J,Extracellular ATP and cell signalingBiochim Biophys ActaYear: 19921134314510.1016/0167-4889(92)90025-71311958
Wardas J,Neuroprotective role of adenosine in CNSPol J PharmacolYear: 20025431332612523485
Gever J,Cockayne D,Dillon M,Burnstock G,Ford A,Pharmacology of P2X channelsPflugers ArchYear: 200645251353710.1007/s00424-006-0070-916649055
Di Virgilio F,P2 Receptors of microglia: sensors for danger signals in the CNSJ NeurochemYear: 200281115
Dell'Antonio G,Quattrini A,Dal Cin E,Fulgenzi A,Ferrero M,Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic ratsNeurosci LettYear: 2002327879010.1016/S0304-3940(02)00385-312098642
Ballerini P,Ciccarelli R,Caciagli F,Rathbone M,Werstiuk E,Traversa U,Buccella S,Giuliani P,Jang S,Nargi E,Visini D,Santavenere C,Di Iorio P,P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienesInt J Immunopathol PharmacolYear: 20051841743016164825
Gandelman M,Peluffo H,Beckman J,Cassina P,Barbeito L,Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosisJ NeuroinflammationYear: 201073310.1186/1742-2094-7-3320534165
Walentynowicz K,Szefer M,Wojtal B,Terlecki P,Wrotek S,Kozak W,Role of prostaglandins in heme-induced feverJ Physiol PharmYear: 2006577382
Cruz Portela L,Oses J,Silvera A,Schmidt A,Lara D,Oliveira Bastini A,Ramirez G,Vinade L,Freitas Sarkis J,Souza D,Guanine and adenine nucleotidaseactivities in rat cerebrospinal fluidBrain ResYear: 200217478
Todorov L,Mihaylova-Todorova S,Westfall T,Sneddon P,Kennedy C,Bjur R,Westfall D,Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivationNatureYear: 1997387767910.1038/387076a09139824
Yang M,Kirley TL,Engineered human soluble calcium-activated nucleotidase inhibits coagulation in vitro and thrombosis in vivoThromb ResYear: 200812254154810.1016/j.thromres.2007.12.00218222531
Stefan C,Jansen S,Bollen M,Modulation of purinergic signaling by NPP-type ectophosphodiesterasesPurinergic SignalYear: 2006236137010.1007/s11302-005-5303-418404476
Trautmann A,Extracellular ATP in immune system: more than just a danger signalSci SignalYear: 200921319318623

Figures

[Figure ID: F1]
Figure 1 

Immunochemical localization of nucleotide receptors on the ependymal cells surface. Signals from single anti-receptor antibodies (red), co-localized signals from antibodies (yellow), the auto-fluorescence of brain tissue (green).



[Figure ID: F2]
Figure 2 

Molecular analysis of proteins present in porcine CSF. A/Polyacrylamide gel electrophoresis stained with silver, B/Western Blotting with anti-NTPDase1 (CD39) antibodies, C/Western Blotting with anti-apyrase from Arabidopsis thaliana antibodies, D/Western Blotting with anti-NTPDase5 antibodies, E/Western Blotting with anti-NPPase3 antibodies.



[Figure ID: F3]
Figure 3 

Expression analyses of ependymal cells nucleotidases. PCR reaction products: M - with the mRNA isolated from the whole brain tissue used as template, E - with the mRNA isolated from ependymal layer cells used as template. The primers were prepared for: 1/NPPase3; 2/NTPDase2; 3/NTPDase5; 4/NTPDase6; 5/NTPDase1.



[Figure ID: F4]
Figure 4 

The sequence of conversions and the enzymes engaged in purines metabolism on the surface of ependymal cells (marked as *) and in the cerebrospinal fluid (marked as ) of porcine brain; detailed description in the text.



Tables
[TableWrap ID: T1] Table 1 

Primer sequences.


ENZYME FORWARD REVERSE
NTPDase1 5'-CTACCCCTTTGACTTCCAGG-3' 5'-GCACACTGGGAGTAAGGGC-3'

NTPDase2 5'-GGAGGCGAAGAGCAGG-3' 5'-TGGAGGCAGCCGCATGAAT-3'

NTPDase3 5'-AGCCTGGTCTCTTGGCTACA-3' 5'-ACCCCAGGCTGACTCTAAGC-3'

NTPDase5 5'-GTGAAAGGTGGCTCCCAA-3' 5'-CTTAGAGGTAGCCAAAGACTC-3'

NTPDase6 5'-ATGGGACCTTGCGGATGACGA-3' 5'-CCAAGCAACACATTCCATA-3'

NPPase3 5'-GTCAGAGCCATGAAATCCACT-3' 5'TCAGTACCATTTGAAGAAAGGATTTAGCTGTTCT-3'

[TableWrap ID: T2] Table 2 

Purines and pyrimidines concentration in porcine CSF.


ATP ADP AMP Ado GTP GDP UTP UDP
Purines concentration [μM] 1.04 ± 0.20* 3.71 ± 2.01 2.07 ± 0.88 2.20 ± 0.38 8.01 ± 3.79 20.35 ± 10.21 2.43 ± 1.3 0.32 ± 0.21

Median 0.98 4.25 1.92 2.23 7.67 21.00 0.99 0.18

*the results are expressed as mean ± standard deviation


[TableWrap ID: T3] Table 3 

Substrate specificity of ependymal cells ecto-nucleotidases and exonucleotidases in CSF.


Substrate Activity (%)

Ecto-nucleotidases* Exo-nucleotidases**
ATP 100 100

ADP 95.1 ± 8.1 91.1 ± 6.2

GTP 60.0 ± 6.8 79.6 ± 7.6

GDP 42.3 ± 9.9 75.4 ± 7.9

AMP 12.2 ± 3.8 5.8 ± 3.2

CTP 5.1 ± 2.4 9.0 ± 2.9

GMP 4.8 ± 1.8 7.2 ± 3.2

TTP 3.7 ± 1.4 5.7 ± 3.5

CDP 3.3 ± 2.1 4.1 ± 2.1

TDP 0.8 ± 0.3 0.5 ± 0.6

*100% = 23 ± 6.3 nmol substrate/min-1 × (cm2)-1

**100% = 20 ± 4.3 nmol substrate/min-1 × mg protein-1

The reaction mixture consisted of 2 mM substrate, 2 mM Ca2+, 2 mM Mg2+ in 50 mM Hepes-OH pH 7.4.


[TableWrap ID: T4] Table 4 

The activity of nucleotidases of brain ventricular system under optimal pH conditions.


Incubation mixture Ependymal ecto-enzymes activity (nmol × min-1 × (cm2)-1)*
Ion Inhibitor ATP = > ADP ATP = > AMP ADP = > AMP ADP = > ATP

pH 7.5 pH 8.5 pH 7.5 pH 6.5

Ca2+ Control (without inhibitor) 19.2 ± 1.1 20.1 ± 3.6 17.8 ± 3.5 11.3 ± 1.2

Suramine 6.9 ± 1.2 17.2 ± 2.8 7.6 ± 1.3 11.2 ± 1.7

Ap5A 16.5 ± 2.3 5.2 ± 0.9 17.7 ± 2.1 4.2 ± 1.0

Mg2+ Control (without inhibitor) 19.4 ± 1.9 20.4 ± 2.4 16.7 ± 2.0 18.5 ± 1.9

Suramine 7.1 ± 2.0 19.4 ± 2.5 6.9 ± 1.5 18.2 ± 1.9

Ap5A 21.0 ± 3.5 5.1 ± 1.1 16.5 ± 0.9 4.8 ± 0.9

Incubation mixture CSF exo-enzymes activity (nmol × min-1 × mg-1)*

Ion Inhibitor ATP = > ADP ATP = > AMP ADP = > AMP ADP = > ATP

pH 7.0 pH 8.0 pH 7.5 pH 6.5

Ca2+ Control (without inhibitor) 21.1 ± 2.6 4.0 ± 0.8 18.1 ± 2.1 18.5 ± 2.1

Suramine 10.9 ± 0.9 2.7 ± 0.9 11.2 ± 1.1 17.6 ± 1.2

Ap5A 11.9 ± 1.2 2.8 ± 1.2 14.9 ± 0.8 4.6 ± 0.7
Mg2+ Control (without inhibitor) 23.0 ± 3.5 5.9 ± 2.3 25 ± 1.9 24.5 ± 2.1

Suramine 13.2 ± 2.3 3.8 ± 1.6 15.2 ± 2.3 23.5 ± 3.2

Ap5A 11.2 ± 1.6 4.4 ± 1.6 9.1 ± 0.1 5.3 ± 0.8

*expressed as concentration of reaction products



Article Categories:
  • Research

Keywords: extracellular nucleotides, ecto-nucleotidases, exo-nucleotidases, nucleotide receptor, brain ventricular system.

Previous Document:  Post term dietary-induced changes in DHA and AA status relate to gains in weight, length, and head c...
Next Document:  Life review therapy for older adults with moderate depressive symptomatology: a pragmatic randomized...