Document Detail


Skin delivery of ferulic acid from different vesicular systems.
MedLine Citation:
PMID:  21329050     Owner:  NLM     Status:  In-Process    
Abstract/OtherAbstract:
The aim of the present research is to evaluate the skin delivery capabilities of different vesicular systems, including conventional liposomes (CL), Tween 80-based deformable liposomes (DL), invasomes (INS) and ethosomes bearing ferulic acid (FA) being an antioxidant exhibiting a wide range of therapeutic effects against various diseases. All of the test formulations were characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin permeation and skin deposition. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) defined that all of liposomal vesicles were almost spherical, displaying unilamellar structures with low polydispersity (PDI < 0.2) and nanometric size range (z-average no more than 150 nm). In addition, all the vesicular systems except conventional liposomes were negatively charged to a certain extent. In vitro skin permeation and skin deposition experiments demonstrated that the permeation profile of ferulic acid through human stratum corneum epidermis membrane (SCE) and the drug deposition in skin were both improved significantly using these vesicular liposomal systems. Permeation and skin deposition enhancing effect was highlighted by the ethosomal system containing 18.0 mg/ml of ferulic acid with an significantly (P < 0.01) enhanced skin flux (267.8 +/- 16.77 microg/cm2/h) and skin drug deposition (51.67 +/- 1.94 microg/cm2), which was 75 times and 7.3 times higher than those of ferulic acid from saturated PBS (pH 7.4) solution, respectively. This study demonstrated that ethosomes are promising vesicular carriers for delivering ferulic acid into or across the skin.
Authors:
Ming Chen; Xiangli Liu; Alfred Fahr
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of biomedical nanotechnology     Volume:  6     ISSN:  1550-7033     ISO Abbreviation:  J Biomed Nanotechnol     Publication Date:  2010 Oct 
Date Detail:
Created Date:  2011-02-18     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101230869     Medline TA:  J Biomed Nanotechnol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  577-85     Citation Subset:  IM    
Affiliation:
Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessingstr. 8, 0-07743 Jena, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Ibuprofen transdermal ethosomal gel: characterization and efficiency in animal models.
Next Document:  Penetration of quantum dot particles through human skin.