Document Detail


Skin Permeation of Small-Molecule Drugs, Macromolecules, and Nanoparticles Mediated by a Fractional Carbon Dioxide Laser: The Role of Hair Follicles.
MedLine Citation:
PMID:  23138262     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
PURPOSE: To evaluate skin permeation enhancement mediated by fractional laser for different permeants, including hydroquinone, imiquimod, fluorescein isothiocyanate-labeled dextran (FD), and quantum dots. METHODS: Skin received a single irradiation of a fractional CO(2) laser, using fluence of 2 or 4 mJ with densities of 100 ∼ 400 spots/cm(2). In vitro and in vivo skin penetration experiments were performed. Fluorescence and confocal microscopies for imaging delivery pathways were used. RESULTS: The laser enhanced flux of small-molecule drugs 2 ∼ 5-fold compared to intact skin. A laser fluence of 4 mJ with a 400-spot/cm(2) density promoted FD flux at 20 and 40 kDa from 0 (passive transport) to 0.72 and 0.43 nmol/cm(2)/h, respectively. Microscopic images demonstrated a significant increase in fluorescence accumulation and penetration depth of macromolecules and nanoparticles after laser exposure. Predominant routes for laser-assisted delivery may be intercellular and follicular transport. CO(2) laser irradiation produced 13-fold enhancement in follicular deposition of imiquimod. Laser-mediated follicular transport could deliver permeants to deeper strata. Skin barrier function as determined by transepidermal water loss completely recovered by 12 h after irradiation, much faster than conventional laser treatment (4 days). CONCLUSIONS: Fractional laser could selectively enhance permeant targeting to follicles such as imiquimod and FD but not hydroquinone, indicating the importance of selecting feasible drugs for laser-assisted follicle delivery.
Authors:
Woan-Ruoh Lee; Shing-Chuan Shen; Saleh A Al-Suwayeh; Hung-Hsu Yang; Yi-Ching Li; Jia-You Fang
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-10
Journal Detail:
Title:  Pharmaceutical research     Volume:  -     ISSN:  1573-904X     ISO Abbreviation:  Pharm. Res.     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-9     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8406521     Medline TA:  Pharm Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Graduate Institute of Medical Sciences,, Taipei Medical University, Taipei, 110, Taiwan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Exploration of Optimal Dosing Regimens of Haloperidol, a D(2) Antagonist, via Modeling and Simulatio...
Next Document:  Rapid Insight into Heating-Induced Phase Transformations in the Solid State of the Calcium Salt of A...