Document Detail


Similarity and denoising.
MedLine Citation:
PMID:  23277611     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
We can discover the effective similarity among pairs of finite objects and denoise a finite object using the Kolmogorov complexity of these objects. The drawback is that the Kolmogorov complexity is not computable. If we approximate it, using a good real-world compressor, then it turns out that on natural data the processes give adequate results in practice. The methodology is parameter-free, alignment-free and works on individual data. We illustrate both methods with examples.
Authors:
Paul M B Vitányi
Publication Detail:
Type:  Journal Article     Date:  2012-12-31
Journal Detail:
Title:  Philosophical transactions. Series A, Mathematical, physical, and engineering sciences     Volume:  371     ISSN:  1364-503X     ISO Abbreviation:  Philos Trans A Math Phys Eng Sci     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-01     Completed Date:  2013-03-07     Revised Date:  2013-04-24    
Medline Journal Info:
Nlm Unique ID:  101133385     Medline TA:  Philos Trans A Math Phys Eng Sci     Country:  England    
Other Details:
Languages:  eng     Pagination:  20120091     Citation Subset:  -    
Affiliation:
National Research Center for Mathematics and Computer Science in the Netherlands, Science Park 123, 1098XG Amsterdam, The Netherlands. paul.vitanyi@cwi.nl
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Rotary components, random ellipses and polarization: a statistical perspective.
Next Document:  Model-based machine learning.