Document Detail

Sharpening the Thermal Release of DNA from Nanoparticles: Towards a Sequential Release Strategy.
MedLine Citation:
PMID:  23341260     Owner:  NLM     Status:  Publisher    
Unlike the sharp melting behavior of DNA-linked nanoparticle aggregates, the melting of DNA strands from individual gold nanoparticles is broad despite the high surface density of bound DNA. Here, it is demonstrated how sharpened melting can be achieved in colloidal nanoparticle systems using branched DNA-doubler structures hybridized with complementary DNA-doublers bound to the gold nanoparticle. Moreover, sharpened transitions are observed when DNA-doublers are hybridized with linear DNA-modified gold nanoparticles. This result suggests that the DNA density on nanoparticles is intrinsically great enough to form cooperative structures with the DNA-doublers. Finally, by introducing abasic destabilizing groups, the melting temperature of these DNA-doublers decreases without decreasing the sharpness. Consequently, by varying the temperature, two DNA-doublers with different stabilities dissociate sequentially from the gold nanoparticle surface, without overlapping and within a narrow temperature window. Owing to the excellent thermal selectivities exhibited by this system, the implementation of DNA-doublers in sequential photothermal therapies and with other nanomedicine delivery agents that rely on DNA dissociation as the mechanism of selective release is anticipated.
Julián A Díaz; Julianne M Gibbs-Davis
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-23
Journal Detail:
Title:  Small (Weinheim an der Bergstrasse, Germany)     Volume:  -     ISSN:  1613-6829     ISO Abbreviation:  Small     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101235338     Medline TA:  Small     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Department of Chemistry, University of Alberta, T6G 2G2, Canada.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Exploring the relationship between dental wear and status in late medieval subadults from England.
Next Document:  Differentiation Related Response to DNA Breaks in Human Mesenchymal Stem Cells.