Document Detail

Severe lactic acidosis in a patient with B-cell lymphoma: a case report and review of the literature.
Jump to Full Text
MedLine Citation:
PMID:  20069124     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Lactic acidosis is commonly observed in clinical situations such as shock and sepsis, as a result of tissue hypoperfusion and hypoxia. Lymphoma and leukemia are among other clinical situations where lactic acidosis has been reported. We present a case of a 59-year-old female with lactic acidosis who was found to have aggressive B-cell lymphoma. There have been 29 cases of lymphoma induced lactic acidosis reported thus far; however all reported cases have abnormal vital signs or concomitant medical conditions that may lead to lactic acidosis. The pathogenesis of malignancy-induced lactic acidosis is not well understood; however associated factors include increased glycolysis, increased lactate production by cancer cells, and decreased hepatic clearance of lactate. When it occurs, lactic acidosis is a poor prognostic sign in these patients. Prompt diagnosis and treatment of underlying lymphoma or leukemia remains the only way to achieve complete resolution of lactic acidosis in these patients.
Authors:
Farn Huei Chan; Daniel Carl; Laurel J Lyckholm
Related Documents :
12762214 - Primary amyloidosis (al) presenting with nephrotic syndrome: a case report and discussion.
15621794 - Primary gastric hodgkin's lymphoma: a case report and review of the literature.
1054144 - Burkitt's lymphoma.
16680734 - Adrenal enlargement and insufficiency: a common presentation of intravascular large b-c...
11668354 - Reporting on methods of subgroup analysis in clinical trials: a survey of four scientif...
1484254 - The gymnast's wrist: acquired positive ulnar variance following chronic epiphyseal injury.
Publication Detail:
Type:  Journal Article     Date:  2010-01-04
Journal Detail:
Title:  Case reports in medicine     Volume:  2009     ISSN:  1687-9635     ISO Abbreviation:  Case Rep Med     Publication Date:  2009  
Date Detail:
Created Date:  2010-01-13     Completed Date:  2011-07-14     Revised Date:  2013-02-21    
Medline Journal Info:
Nlm Unique ID:  101512910     Medline TA:  Case Rep Med     Country:  United States    
Other Details:
Languages:  eng     Pagination:  534561     Citation Subset:  -    
Affiliation:
Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA 23298, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Case Report Med
Journal ID (publisher-id): CRM
ISSN: 1687-9627
ISSN: 1687-9635
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2009 Farn Huei Chan et al.
open-access:
Received Day: 4 Month: 9 Year: 2009
Accepted Day: 20 Month: 11 Year: 2009
Print publication date: Year: 2009
Electronic publication date: Day: 4 Month: 1 Year: 2010
Volume: 2009E-location ID: 534561
ID: 2804112
PubMed Id: 20069124
DOI: 10.1155/2009/534561

Severe Lactic Acidosis in a Patient with B-Cell Lymphoma: A Case Report and Review of the Literature
Farn Huei Chan1*
Daniel Carl2
Laurel J. Lyckholm1
1Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA 23298, USA
2Department of Internal Medicine, Division of Nephrology, Virginia Commonwealth University, Richmond, VA 23298, USA
Correspondence: *Farn Huei Chan: fchan@mcvh-vcu.edu
[other] Recommended by Estella M. Matutes

1. Introduction

Lactic acidosis is a common cause of an anion gap acidosis that often carries a significant risk for mortality. Lactic acidosis most commonly results from an imbalance between oxygen delivery and oxygen demand (Type A). However, it can also occur in the absence of a recognizable impairment in systemic oxygen delivery, resulting from impaired oxidative phosphorylation (Type B). Type B lactic acidosis is associated with numerous conditions, including inborn errors of metabolism, drugs and toxins, systemic diseases (i.e., diabetes and sepsis), and less commonly, malignancy.

Lactic acidosis has been reported in cases of lymphoma and leukemia. The exact pathophysiology and the best way to manage lactic acidosis in this setting remain unclear. We present a case and review the literature relating to lactic acidosis in lymphoma.


2. Case Report

A previously healthy 59-year-old high school teacher presented with severe fatigue, generalized weakness, decreased appetite, weight loss, and increased abdominal swelling for 2 months. She reported no fever, night sweats, cough, or urinary symptoms. On physical examination, she appeared cachectic with temporal muscle wasting. Blood pressure was 113/38, heart rate was 134/min, respiratory rate was 22/min, temperature was 98.6°F, and she was not hypoxic on room air. The spleen tip was palpated at 10 cm below the left costal margin. Physical exam findings were otherwise normal.

Laboratory data revealed sodium 134 mmol/L, potassium 4.4 mmol/L, chloride 93 mmol/L, carbon dioxide <10 mmol/L, anion gap >31, blood urea nitrogen (BUN) 25 mg/dL, creatinine 0.6 mg/dL, and glucose 87 mg/dL. Other pertinent labs included leukocyte count 6.4 × 109/L, hemoglobin 4.1 g/dL, platelet count 19 × 109/L, aspartate transaminase (AST) 103 U/L, alanine transaminase (ALT) 15 U/L, alkaline phosphatase 104 U/L, lactate dehydrogenase (LDH) 647 mmol/L (normal range 0.5–2.2 mmol/L), haptoglobin 55 mg/dL, uric acid 13.6 mg/dL, and lactate 16.5 mmol/L. Arterial blood gas revealed a pH of 7.33, a PCO2 of 21 mmHg, and PO2 of 132 mmHg, with a bicarbonate of 11.2 mmol/L. Peripheral blood smear revealed no blast cells or abnormal leukocytes. Blood cultures were negative. Computed tomography (CT) scan of the abdomen and pelvis revealed massive splenomegaly measuring 25 cm craniocaudally, and extensive lymphadenopathy in the abdomen and pelvis (Figure 1).

The patient was aggressively hydrated and received blood transfusions to improve her anemia. However, she remained tachycardic. Throughout her hospital course, her blood pressures remained stable. No source of infection or bleeding was identified. With these measures, lactate improved to 6.7 mmol/L but shortly after that rose to 27.7 mmol/L (Figures 2 and 3).

While awaiting pathological diagnosis, the patient deteriorated clinically, and on day 4, intravenous corticosteroids were administered for presumed high-grade lymphoma. In addition, a sodium bicarbonate infusion and allopurinol were initiated for tumor lysis syndrome prophylaxis.

Bone marrow biopsy revealed a diffuse (>50%) infiltrate of cells positive for CD 45 and CD 20, negative for CD 5, CD 10, CD 23, and cyclin D1. GTG-banding studies reveal a very complex karyotype. However, morphologically the cells were not large enough to be called large B-cell lymphoma. The final diagnosis was CD 20-positive B-cell lymphoma. Cyclophosphamide, vincristine, and prednisone were started on day 7. On day 8, she developed respiratory distress with new bilateral pulmonary infiltrates concerning for adult respiratory distress syndrome and became hypotensive requiring vasopressor support. Given the severity of the multiple organ failure, her family decided to withdraw support, and she died on hospital day 12. Autopsy revealed extensive lymphoma as well as diffuse pulmonary, kidney, and esophageal hemorrhage.


3. Discussion

Lactate is produced from the anaerobic metabolism of pyruvate, which in turn is generated from glucose via glycolysis. Therefore, lactate production is a surrogate marker of acidosis during a hypoxic state, and not the direct cause. Lactic acidosis is infrequently encountered in malignancies; yet when present portends an extremely poor prognosis [1]. Moreover, the strikingly high mortality associated with lactic acidosis has prompted some oncologists to consider this an oncological emergency [2]. Hematologic malignancies, including acute leukemias and high-grade lymphomas, are the most common neoplastic disorders associated with lactic acidosis. Twenty nine cases of lymphoma induced lactic acidosis have been published in English language journals (Table 1). Seven patients experienced either a partial or complete remission, three of whom subsequently expired from recurrence and there is no long-term followup on an additional two patients. As patients with malignancy induced lactic acidosis are often criticallyill, it is difficult to discern whether the etiology of lactic acidosis is completely a result from the malignancy and not from other potential causes of Type A lactic acidosis (i.e., sepsis, hypotension, hypoxia, etc.). In the patient we present above, she did not have hypoxia or significant hypotension when the lactic acidosis was discovered. The lactic acidosis persisted despite volume repletion, including blood transfusions. Furthermore, we could not identify a source of infection and her lactic acidosis preceded her intensive care visit. However, she was anemic, tachycardic, and tachypneic at presentation. Therefore, it is impossible to conclude there were no additional influences that may have led to Type A lactic acidosis. Upon reviewing the current literature of lymphoma induced lactic acidosis, many cases did have concomitant sepsis, anemia, surgical procedures, or abnormal vital signs (Table 1). Accordingly, every published case that reported vital signs had at least one vital sign indicative of systemic inflammatory response. As the majority of cases to date had concomitant factors that potentially could lead to lactic acidosis, as in the case we present above, the true incidence of lymphoma induced lactic acidosis remains cloudy.

The pathogenesis of lactic acidosis in lymphoma is incompletely understood and likely multifactorial. Liver metastasis and dysfunction is often cited as a potential cause because of reduced hepatic utilization of lactate via gluconeogenesis [7]. However, lactic acidosis can occur in the absence of liver dysfunction [1, 22, 23]. In fact, Sillos et al. reported 19% of patients with lactic acidosis in the setting of hematological malignancies did not have liver involvement [1]. Furthermore, lactic acidosis is uncommon in patients with cirrhosis or fulminant hepatic failure in the absence of malignancy [24]. Accordingly, although liver dysfunction may contribute to the development of lactic acidosis, it is unlikely to be the sole cause. Another potential mechanism for lactic acidosis is increased glycolytic activity, with a subsequent increase in lactate acid generation, in cancer cells. Further supporting this hypothesis, several cases have been characterized by recurrent hypoglycemia, presumably related to increased glycolysis [7, 9, 12]. Overexpression of type II hexokinase [25], a glycolytic enzyme found in mitochondria, or increased IGF-binding protein (IGFBP) activity, has been implicated in the increased glycolysis in cancer cells [1]. Finally, excessive lactate production may result from highly aggressive tumors that simply outgrow their blood supply [26]. In essence, there is production of lactate from local hypoxia in the absence of any systemic hypoxia or hypoperfusion.

Regardless of etiology, the treatment for lactic acidosis is to discern and correct the underlying mechanism producing the lactate, as well as to ensure adequate oxygen delivery in cases of hypoxia. Accordingly, in malignancy derived lactic acidosis, chemotherapy is the primary treatment modality. As demonstrated in Table 1, the only treatment modality that consistently leads to remission was initiation of chemotherapy. Of the 29 reported cases of lymphoma induced lactic acidosis, only seven went into remission, all of whom received chemotherapy. Of the seven cases who went into remission, the lactate levels normalized in 6 (one case did not report what happened to the lactate levels after chemotherapy). In five of the six cases, resolution of the lactic acidosis occurred as early as 15 hours and up to 3 days after starting chemotherapy. In the remaining case, the lactate level normalized weeks after chemotherapy was introduced; however, did so within 2 days of starting salvage chemotherapy. Thus, it is probably safe to conclude that if lactic acidosis improves after chemotherapy, it occurs in timely manner. Additionally, it is conceivable that prompt resolution of lactic acidosis could be a surrogate marker of inducing remission.

Both intravenous (IV) bicarbonate and hemodialysis have been used to control the lactic acidosis until chemotherapy can treat the malignancy. The use of IV bicarbonate as an interim treatment of profound acidosis (in either the presence or absence of malignancy) remains a contentious issue [2730]. As severe acidosis can cause respiratory fatigue and hemodynamic instability, intravenous bicarbonate is often used to attenuate the sequelae of systemic acidosis. However, there are potential side effects from using IV sodium bicarbonate. The most obvious of which are hypervolemia and hypernatremia [31]. Additionally, sodium bicarbonate infusion may actually increase lactic acid production [28]. The rise in lactate levels has been seen in human [32] and animal [33, 34] studies. The decreased oxygen delivery has been postulated to occur from both a reduction in PaO2 [35] as well as increased affinity of oxygen to hemoglobin resulting from the rise in systemic pH following IV bicarbonate infusion [36]. The effect of IV bicarbonate on mortality or lactate concentrations in the setting of malignancy induced lactic acidosis has not been directly studied. From our review of the literature, 20 of the 29 cases used IV bicarbonate to treat the acidosis. Two patients received IV bicarbonate without adjunctive chemotherapy, and both died within days. Of the 7 patients who went into remission, 6 were on IV bicarbonate. Although it is unlikely that bicarbonate administration provides any mortality benefit beyond chemotherapy, this has not been directly studied.

Renal replacement therapy (RRT), including hemodialysis, peritoneal dialysis, or hemofiltration can be used to remove lactate and correct acidosis [37]. Prikis et al. recently reported a case of lymphoma induced lactic acidosis successfully treated with sustained low efficiency dialysis implemented as a temporary measure to correct acidosis and hypervolemia until chemotherapy was initiated [5]. Two other cases of lymphoma induced lactic acidosis have been treated with hemodialysis and chemotherapy, both of whom died within 10 days. As the prognosis of lymphoma induced lactic acidosis is grim, the only hope for remission is starting chemotherapy. Although IV bicarbonate and hemodialysis can be implemented in an attempt to control the acidosis, it must be emphasized that these measures should be viewed as a bridge until the underlying cause is treated.

In conclusion, lactic acidosis is an ominous sign in patients with lymphoma or leukemia. The exact pathogenesis of this condition remains unclear. Prompt diagnosis and early treatment of underlying lymphoma or leukemia is the only way to achieve complete resolution of lactic acidosis in these patients.


References
1. Sillos EM,Shenep JL,Burghen GA,Pui C-H,Behm FG,Sandlund JT. Lactic acidosis: a metabolic complication of hematologic malignancies: case report and review of the literatureCancerYear: 20019292237224611745277
2. Jabr FI. Lactic acidosis in patients with neoplasms: an oncologic emergencyMayo Clinic ProceedingsYear: 200681111505150617120408
3. Friedenberg AS,Brandoff DE,Schiffman FJ. Type B lactic acidosis as a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature reviewMedicineYear: 200786422523217632264
4. He Y-F,Wei W,Sun Z-M,et al. Fatal lactic acidosis and hypoglycemia in a patient with relapsed natural killer/T-cell lymphomaAdvances in TherapyYear: 200724350550917660158
5. Prikis M,Bhasin V,Young MP,Gennari FJ,Rimmer JM. Sustained low-efficiency dialysis as a treatment modality in a patient with lymphoma-associated lactic acidosisNephrology Dialysis TransplantationYear: 200722823832385
6. Dogan E,Erkoc R,Sayarlioglu H,Alici S,Dilek I,Alici O. Fatal lactic acidosis due to leukemic transformation in a patient with non-Hodgkin's lymphoma: case reportAdvances in TherapyYear: 200522544344616418152
7. Glasheen JJ,Sorensen MD. Burkitt's lymphoma presenting with lactic acidosis and hypoglycemia—a case presentationLeukemia and LymphomaYear: 200546228128315621814
8. Ohtsubo K,Imamura R,Seki R,et al. Blastoid variant of mantle cell lymphoma with lactic acidosis: a case reportInternational Journal of HematologyYear: 200480542843115646654
9. Di Comite G,Dagna L,Piatti PM,Monti LD,Tantardini F,Praderio L. Hypoglycaemia and lactic acidosis in a MALT non Hodgkin's lymphomaLeukemia and LymphomaYear: 20024361341134212153006
10. Thakur V,Sander G,Rab ST. Hodgkin's disease and lactic acidosisNephronYear: 200188327627711423762
11. Yasin M,Hartranft TH. Primary hepatic lymphoma: unusual presentation and clinical courseAmerican SurgeonYear: 199763119519539358778
12. Dürig J,Fiedler W,De Wit M,Steffen M,Hossfeld DK. Lactic acidosis and hypoglycemia in a patient with high-grade non-Hodgkin's lymphoma and elevated circulating TNF-αAnnals of HematologyYear: 199672297998597616
13. Scheurleer-Hommes ML,Schaafsma MR,Kluin-Nelemans JC. Lactic acidosis in a patient with B-cell non-Hodgkin's lymphomaLeukemiaYear: 199486106510668207979
14. Caspar CB,Oelz O. Lactic acidosis in malignant lymphomaAmerican Journal of MedicineYear: 19919121971981651052
15. Doolittle GC,Wurster MW,Rosenfeld CS,Bodensteiner DC. Malignancy-induced lactic acidosisSouthern Medical JournalYear: 19888145335363282319
16. VanderMolen LA,Swain S,Longo DL. Lactic acidosis in lymphoma: prompt resolution with therapy directed at lymphomaJournal of the National Cancer InstituteYear: 19888013107710783411621
17. Johnson DA,Whelan TV. Lactic acidosis—a review of the association with neoplastic disorderMilitary MedicineYear: 198515042062083925375
18. Leyden M,Sullivan J,Szer J,Brodie G. Fatal lactic acidosis in lymphoma. A report of two casesAustralian and New Zealand Journal of MedicineYear: 19831321791806577838
19. Nadiminti Y,Wang JC,Chou S-Y. Lactic acidosis associated with Hodgkin's disease. Response to chemotherapyThe New England Journal of MedicineYear: 1980303115177374729
20. Mintz U,Sweet DL Jr.,Bitran JD,Ultmann JE. Lactic acidosis and diffuse histiocytic lymphoma (DHL)American Journal of HematologyYear: 197844359365362908
21. Scheerer PP,Pierre RV,Schwartz DL,et al. Reed-Sternberg-Cell leukemia and lactic acidosis; unusual manifestations of Hodgkin's diseaseThe New England Journal of MedicineYear: 196427027427814074652
22. Rao KS,Mehta R,Ferlinz J. Unusual presentation of cancer-induced lactic acidosisPostgraduate Medical JournalYear: 198864752p. 475
23. Fujimura M,Shirasaki H,Kasahara K,Matsuda T. Small cell lung cancer accompanied by lactic acidosis and syndrome of inappropriate secretion of antidiuretic hormoneLung CancerYear: 199822325125410048478
24. Record CO,Iles RA,Cohen RD,Williams R. Acid base and metabolic disturbances in fulminant hepatic failureGutYear: 19751621441491126664
25. Mazurek S,Boschek CB,Eigenbrodt E. The role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapyJournal of Bioenergetics and BiomembranesYear: 19972943153309387092
26. Archer S,Bache-Wiig B. Lactic acidosis B associated with solid tumorsMinnesota MedicineYear: 19866995115143020387
27. Mathieu D,Neviere R,Billard V,Fleyfel M,Wattel F. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical studyCritical Care MedicineYear: 19911911135213561935152
28. Forsythe SM,Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosisChestYear: 2000117126026710631227
29. Cuhaci B,Lee J,Ahmed Z,Forsythe SM,Schmidt GA. Sodium bicarbonate controversy in lactic acidosisChestYear: 2000118388288410988226
30. Halperin ML,Cheema-Dhadli S,Halperin FA,Kamel KS. Rationale for the use of sodium bicarbonate in a patient with lactic acidosis due to a poor cardiac outputNephronYear: 19946632582618190176
31. Mattar JA,Weil MH,Shubin H,Stein L. Cardiac arrest in the critically ill—part II: hyperosmolal states following cardiac arrestAmerican Journal of MedicineYear: 19745621621684812073
32. Fields ALA,Wolman SL,Halperin ML. Chronic lactic acidosis in a patient with cancer: therapy and metabolic consequencesCancerYear: 1981478202620296261933
33. Graf H,Leach W,Arieff AI. Metabolic effects of sodium bicarbonate in hypoxic lactic acidosis in dogsThe American Journal of PhysiologyYear: 19852495, part 2F6306352998202
34. Rhee KH,Toro LO,McDonald GG,Nunnally RL,Levin DL. Carbicarb, sodium bicarbonate, and sodium chloride in hypoxic lactic acidosis: effect on arterial blood gases, lactate concentrations, hemodynamic variables, and myocardial intracellular pHChestYear: 199310439139188396003
35. Bersin RM,Chatterjee K,Arieff AI. Metabolic and hemodynamic consequences of sodium bicarbonate administration in patients with heart diseaseAmerican Journal of MedicineYear: 19898717142741982
36. Bellingham AJ,Detter JC,Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosisJournal of Clinical InvestigationYear: 19715037007065545127
37. Fall PJ,Szerlip HM. Lactic acidosis: from sour milk to septic shockJournal of Intensive Care MedicineYear: 200520525527116145217

Article Categories:
  • Case Report


Previous Document:  Cysteine-free proteins in the immunobiology of arthropod-borne diseases.
Next Document:  YQ36: a novel bisindolylmaleimide analogue induces KB/VCR cell death.