Document Detail

Semipermeable polyurethane membrane as an artificial skin for the premature neonate.
MedLine Citation:
PMID:  2726350     Owner:  NLM     Status:  MEDLINE    
A thin and semipermeable polyurethane membrane adherently applied to premature neonates as an artificial skin was investigated as an atraumatic surface barrier sufficient to reduce transepidermal water loss without inhibiting natural infant skin development during the first few days of life. A sample group of 18 neonates (birth weight [mean +/- SEM] 1.39 +/- 0.12 kg, gestation [mean +/- SEM] 31 +/- 1 weeks) received two 3 X 3-cm polyurethane patches adherent over the chest and abdomen. Transepidermal water loss was measured before and after application and after membrane removal. During longitudinal study, seven infants were treated day 1 through day 4 of life and were evaluated for skin integrity 24 hours after patch removal on day 5. Polyurethane membranes produced an acute and significant reduction in transepidermal water loss for the 18 subjects: 21.1 +/- 2.0 g/m2/h before application v 10.5 +/- 1.4 g/m2/h with membranes in place (P less than .001). Immediately after patch removal, transepidermal loss returned to 22.8 +/- 3.0 g/m2/h. Throughout the first four days of life, daily measurements of water loss were significantly less: 53% to as much as 72% reduction from polyurethane-covered sites when compared with adjacent naked skin. After polyurethane membrane removal, skin development of transepidermal barrier function was comparable over both sites. Dressings did not lose adhesive or plastic properties during an extended time in either radiant warmer or incubator environments, electronic monitoring through membranes was not impeded, and adhesive injuries were not observed. An adherent, semipermeable polyurethane membrane may be effective as an atraumatic artificial barrier to prevent large transepidermal water loss and protect the skin of the premature neonate.
A Knauth; M Gordin; W McNelis; S Baumgart
Publication Detail:
Type:  Comparative Study; Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, P.H.S.    
Journal Detail:
Title:  Pediatrics     Volume:  83     ISSN:  0031-4005     ISO Abbreviation:  Pediatrics     Publication Date:  1989 Jun 
Date Detail:
Created Date:  1989-07-06     Completed Date:  1989-07-06     Revised Date:  2008-11-21    
Medline Journal Info:
Nlm Unique ID:  0376422     Medline TA:  Pediatrics     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  945-50     Citation Subset:  AIM; IM    
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Body Temperature Regulation
Dehydration / prevention & control
Evaluation Studies as Topic
Infant, Low Birth Weight
Infant, Newborn
Infant, Premature / physiology*
Infant, Premature, Diseases / prevention & control
Membranes, Artificial*
Skin Physiological Phenomena
Time Factors
Water Loss, Insensible
Grant Support
Reg. No./Substance:
0/Membranes, Artificial; 0/Polyurethanes

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Nursery privileges of the private attending pediatrician in the care of critically sick neonates in ...
Next Document:  Black pediatricians: career concerns and choices.