Document Detail

Second-site suppressor mutations assist in studying the function of the 3' noncoding region of turnip yellow mosaic virus RNA.
MedLine Citation:
PMID:  1501271     Owner:  NLM     Status:  MEDLINE    
The 3' noncoding region of turnip yellow mosaic virus RNA includes an 82-nucleotide-long tRNA-like structure domain and a short upstream region that includes a potential pseudoknot overlapping the coat protein termination codon. Genomic RNAs with point mutations in the 3' noncoding region that result in poor replication in protoplasts and no systemic symptoms in planta were inoculated onto Chinese cabbage plants in an effort to obtain second-site suppressor mutations. Putative second-site suppressor mutations were identified by RNase protection and sequencing and were then introduced into genomic cDNA clones to permit their characterization. A C-57----U mutation in the tRNA-like structure was a strong suppressor of the C-55----A mutation which prevented both systemic infection and in vitro valylation of the viral RNA. Both of these phenotypes were rescued in the double mutant. An A-107----C mutation was a strong second-site suppressor of the U-96----G mutation, permitting the double mutant to establish systemic infection. The C-107 and G-96 mutations are located on opposite strands of one helix of a potential pseudoknot, and the results support a functional role for the pseudoknot structure. A mutation near the 5' end of the genome (G + 92----A), at position -3 relative to the initiation codon of the essential open reading frame 206, was found to be a general potentiator of viral replication, probably as a result of enhanced expression of open reading frame 206. The A + 92 mutation enhanced the replication of mutant TYMC-G96 in protoplasts but was not a sufficiently potent suppressor to permit systemic spread of the A + 92/G-96 double mutant in plants.
C H Tsai; T W Dreher
Publication Detail:
Type:  Journal Article; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  Journal of virology     Volume:  66     ISSN:  0022-538X     ISO Abbreviation:  J. Virol.     Publication Date:  1992 Sep 
Date Detail:
Created Date:  1992-09-16     Completed Date:  1992-09-16     Revised Date:  2010-09-07    
Medline Journal Info:
Nlm Unique ID:  0113724     Medline TA:  J Virol     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  5190-9     Citation Subset:  IM    
Program in Genetics, Oregon State University, Corvallis 97331-7301.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Base Sequence
Brassica / microbiology*
Molecular Sequence Data
Mosaic Viruses / genetics*,  pathogenicity
Mutation / genetics*
Nucleic Acid Conformation
RNA, Transfer, Val / genetics
RNA, Viral / genetics*
Suppression, Genetic*
Valine-tRNA Ligase / metabolism
Virus Replication / genetics*
Reg. No./Substance:
0/Anticodon; 0/RNA, Transfer, Val; 0/RNA, Viral; EC Ligase

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Traumatic mediastinal lymphocele mimicking other thoracic injuries: case report.
Next Document:  Nuclear factors that bind two regions important to transcriptional activity of the simian immunodefi...