Document Detail

Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
MedLine Citation:
PMID:  15634197     Owner:  NLM     Status:  MEDLINE    
Summary The CBF cold response pathway has a prominent role in cold acclimation. The pathway includes action of three transcription factors, CBF1, 2 and 3 (also known as DREB1b, c and a, respectively), that are rapidly induced in response to low temperature followed by expression of the CBF-targeted genes (the CBF regulon) that act in concert to increase plant-freezing tolerance. The results of transcriptome profiling and mutagenesis experiments, however, indicate that additional cold response pathways exist and may have important roles in life at low temperature. To further understand the roles that the CBF proteins play in configuring the low temperature transcriptome and to identify additional transcription factors with roles in cold acclimation, we used the Affymetrix GeneChip containing probe sets for approximately 24,000 Arabidopsis genes to define a core set of cold-responsive genes and to determine which genes were targets of CBF2 and 6 other transcription factors that appeared to be coordinately regulated with CBF2. A total of 514 genes were placed in the core set of cold-responsive genes, 302 of which were upregulated and 212 downregulated. Hierarchical clustering and bioinformatic analysis indicated that the 514 cold-responsive transcripts could be assigned to one of seven distinct expression classes and identified multiple potential novel cis-acting cold-regulatory elements. Eighty-five cold-induced genes and eight cold-repressed genes were assigned to the CBF2 regulon. An additional nine cold-induced genes and 15 cold-repressed genes were assigned to a regulon controlled by ZAT12. Of the 25 core cold-induced genes that were most highly upregulated (induced over 15-fold), 19 genes (84%) were induced by CBF2 and another two genes (8%) were regulated by both CBF2 and ZAT12. Thus, the large majority (92%) of the most highly induced genes belong to the CBF and ZAT12 regulons. Constitutive expression of ZAT12 in Arabidopsis caused a small, but reproducible, increase in freezing tolerance, indicating a role for the ZAT12 regulon in cold acclimation. In addition, ZAT12 downregulated the expression of the CBF genes indicating a role for ZAT12 in a negative regulatory circuit that dampens expression of the CBF cold response pathway.
Jonathan T Vogel; Daniel G Zarka; Heather A Van Buskirk; Sarah G Fowler; Michael F Thomashow
Related Documents :
20800857 - Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents duri...
15604687 - Characterisation of mal d 1-related genes in malus.
15563627 - Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expres...
24363087 - Wnt/β-catenin signaling cascade down-regulation following massive small bowel resectio...
19355867 - Hepatic delivery of rna interference activators for therapeutic application.
24848707 - Identification of targets of twist1 transcription factor in thyroid cancer cells.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  The Plant journal : for cell and molecular biology     Volume:  41     ISSN:  0960-7412     ISO Abbreviation:  Plant J.     Publication Date:  2005 Jan 
Date Detail:
Created Date:  2005-01-06     Completed Date:  2005-07-19     Revised Date:  2008-11-21    
Medline Journal Info:
Nlm Unique ID:  9207397     Medline TA:  Plant J     Country:  England    
Other Details:
Languages:  eng     Pagination:  195-211     Citation Subset:  IM    
Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Amino Acid Sequence
Arabidopsis / genetics*
Arabidopsis Proteins / genetics*
Chi-Square Distribution
Cold Temperature*
Gene Expression Profiling
Gene Expression Regulation, Plant
Molecular Sequence Data
Multigene Family
Oligonucleotide Array Sequence Analysis
Sequence Alignment
Trans-Activators / genetics*
Transcription Factors / genetics*
Transcription, Genetic*
Reg. No./Substance:
0/Arabidopsis Proteins; 0/CBF2 protein, Arabidopsis; 0/Trans-Activators; 0/Transcription Factors; 0/ZAT12 protein, Arabidopsis

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley...
Next Document:  Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis ge...