Document Detail

Role of microRNAs in cardiac preconditioning.
MedLine Citation:
PMID:  20980922     Owner:  NLM     Status:  In-Process    
Preconditioning (PC) of the heart by sublethal ischemia, mild heat shock, or hypoxia has evolved as a powerful experimental tool to discover novel signaling mechanisms in cardioprotection. The ultimate goal is to determine novel therapeutic targets for potential application in humans to protect the heart against ischemia-related injuries. In recent years, there has been a tremendous interest in understanding the role of small noncoding RNAs, microRNAs (miRs), in cardiovascular diseases. miRs have been recognized as regulators of gene expression by destabilization and translational inhibition of target messenger RNAs. Studies have shown that several miRs, including miR-1, miR-133, miR-21, miR-126, miR-320, miR-92a, and miR-199a, are regulated after preconditioning and play an active role in protecting the heart against ischemia/reperfusion injury. These miRs also drive the synthesis of important cardioprotective proteins including heat shock protein (HSP)-70, endothelial nitric oxide synthase, inducible nitric oxide synthase, HSP-20, Sirt1, and hypoxia-inducible factor 1a. We believe that identification and targeted delivery of miR(s) in the heart could have an immense therapeutic potential in reducing myocardial infarction in patients suffering from heart disease.
Fadi N Salloum; Chang Yin; Rakesh C Kukreja
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Journal of cardiovascular pharmacology     Volume:  56     ISSN:  1533-4023     ISO Abbreviation:  J. Cardiovasc. Pharmacol.     Publication Date:  2010 Dec 
Date Detail:
Created Date:  2011-04-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7902492     Medline TA:  J Cardiovasc Pharmacol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  581-8     Citation Subset:  IM    
Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall St, Richmond, VA 23298, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Grant Support

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Electrophysiological Properties of HBI-3000: A New Antiarrhythmic Agent With Multiple-channel Blocki...
Next Document:  Effects of whole-body vibration training on different devices on bone mineral density.