Document Detail

Revisiting aqueous-acetone mixtures through the concept of molecular emulsions.
MedLine Citation:
PMID:  23039602     Owner:  NLM     Status:  Publisher    
Aqueous acetone mixtures represent a good example of perfectly miscible liquids in reality, and that hard to mix in silico. This is related to a key problem in molecular simulations, which is to distinguish between strongly micro-segregated mixtures from phase-separated ones. The Kirkwood-Buff integrals of in silico aqueous mixtures are often found to be dramatically higher than the experimental ones, hinting at a possible underlying phase separation. This is the case for many combinations of the force field models chosen for water or for acetone. Herein, we demonstrate, through a proper handling of the tail of the correlation functions, that these high values of the Kirkwood-Buff integrals represent in fact a transient regime within the segregated spatial domains, and that they asymptotically settle down to values in much better agreement with the experimental ones. The concept central to this new approach is that of molecular emulsions, where the long range part of the correlations is modulated by the micro-segregated domains, and that it is necessary to take into this modulation in order to recover the correct thermodynamical properties.
Bernarda Kežić; Aurélien Perera
Publication Detail:
Journal Detail:
Title:  The Journal of chemical physics     Volume:  137     ISSN:  1089-7690     ISO Abbreviation:  J Chem Phys     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-8     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0375360     Medline TA:  J Chem Phys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  134502     Citation Subset:  -    
Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, F75252, Paris Cedex 05, France.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Solvation of fullerene and fulleride ion in liquid ammonia: Structure and dynamics of the solvation ...
Next Document:  The phase diagram of ice Ih, II, and III: A quasi-harmonic study.