Document Detail


Reverse endoventricular artificial obturator in tricuspid valve position. Experimental feasibility research study.
MedLine Citation:
PMID:  24397800     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The concept of vena contracta space reduction in tricuspid valve position was tested in an animal model. Feasibility of specific artificial obturator body (REMOT) fixed to the right ventricular apex and interacting with tricuspid valve leaflets was evaluated in three different animal studies. Catheter-based technique was used in three series of experiment in 7 sheep. First acute study was designed for evaluation if the screwing mode of guide wire anchoring to the right ventricular apex is feasible for the whole REMOT body fixing. Longer study was aimed to evaluate stability of the REMOT body in desired position when fixing the screwing wire on its both ends (to the right ventricular apex and to the skin in the neck area). X-ray methods and various morphological methods were used. The third acute study was intended to the REMOT body deployment without any fixing wire. In all of 7 sheep the REMOT was successfully inserted into the right heart cavities and then fixed to the right ventricular apex area. When the REMOT was left in situ more than 6 months it was stable, induced adhesion to the tricuspid valve leaflet and was associated with a specific cell invasion. Releasing of the REMOT from the guiding tools was also successfully verified. Deployment of the obturator body in the aim to reduce the tricuspid valve orifice is feasible and well tolerated in the short and longer term animal model. Specific cell colonization including neovascularization of the obturator body was observed.
Authors:
J Sochman; J H Peregrin; D Pavcnik; B T Uchida; H A Timmermans; D Sedmera; O Benada; O Kofronova; F S Keller; J Rosch
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-1-8
Journal Detail:
Title:  Physiological research / Academia Scientiarum Bohemoslovaca     Volume:  -     ISSN:  1802-9973     ISO Abbreviation:  Physiol Res     Publication Date:  2014 Jan 
Date Detail:
Created Date:  2014-1-8     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9112413     Medline TA:  Physiol Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Localized subacute thyroiditis presenting as a painful hot nodule.
Next Document:  Attachment of human endothelial cells to polyester vascular grafts: pre-coating with adhesive protei...