Document Detail

Reversal of Vascular Macrophage Accumulation and Hypertension by a CCR2 Antagonist in Deoxycorticosterone/Salt-Treated Mice.
MedLine Citation:
PMID:  23033370     Owner:  NLM     Status:  Publisher    
Infiltration of macrophages into the artery wall plays detrimental roles during hypertension by promoting vascular inflammation and endothelial dysfunction, and it occurs via a chemo-attractant action of chemokines on macrophage cytokine receptors. We sought to identify the key chemokine receptors associated with macrophage infiltration into the vascular wall during deoxycorticosterone acetate (DOCA)/salt-induced hypertension in mice and to evaluate the impact of pharmacological inhibition of these receptors on blood pressure and leukocyte accumulation. Mice treated with DOCA/salt for 21 days displayed markedly elevated systolic blood pressure (158±2 versus 114±5 mm Hg in sham group; P<0.0001). Polymerase chain reaction screening via a gene array of 20 chemokine receptors indicated an increased expression of CCR2 in aortas of DOCA/salt-treated mice. Real-time polymerase chain reaction confirmed mRNA upregulation of CCR2 in aortas from DOCA/salt-treated animals and of the CCR2 ligands CCL2, CCL7, CCL8, and CCL12 (all >2-fold versus sham; P<0.05). Flow cytometry revealed 2.9-fold higher macrophage numbers (ie, CD45(+) CD11b(+) F4/80(+) cells) in the aortic wall of DOCA/salt versus sham-treated mice. Intervention with a CCR2 antagonist, INCB3344 (30 mg/kg per day, IP), 10 days after the induction of hypertension with DOCA/salt treatment, reduced the aortic expression of CCR2 mRNA and completely reversed the DOCA/salt-induced influx of macrophages. Importantly, INCB3344 substantially reduced the elevated blood pressure in DOCA/salt-treated mice. Hence, our findings highlight CCR2 as a promising therapeutic target to reduce both macrophage accumulation in the vascular wall and blood pressure in hypertension.
Christopher T Chan; Jeffrey P Moore; Klaudia Budzyn; Elizabeth Guida; Henry Diep; Antony Vinh; Emma S Jones; Robert E Widdop; James A Armitage; Samy Sakkal; Sharon D Ricardo; Christopher G Sobey; Grant R Drummond
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-1
Journal Detail:
Title:  Hypertension     Volume:  -     ISSN:  1524-4563     ISO Abbreviation:  Hypertension     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7906255     Medline TA:  Hypertension     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Department of Anatomy and Developmental Biology, and Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Pain catastrophizing in youths with physical disabilities and chronic pain.
Next Document:  Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, ...