Document Detail

Remote post-conditioning reduces hypoxic damage early after experimental stroke.
MedLine Citation:
PMID:  23540402     Owner:  NLM     Status:  In-Data-Review    
OBJECTIVES: Given that reliable markers for early ischemic brain damage are lacking, we set out to test whether pimonidazole can be used as a reliable tool in the quantification of hypoxic insults, at early time points following experimental stroke.
METHODS: We have used semi-quantitative Western blotting detection of pimonidazole adducts in a rat model of reversible middle cerebral artery occlusion (MCAO), treated with remote post-conditioning.
RESULTS: First, we demonstrated that a linear relationship exist between pimonidazole binding in the ischemic hemisphere and duration of ischemia, in animals subjected to 5, 15, 30, or 60 minutes of occlusion followed by 120 minutes of reflow. Then we showed a significant reduction in pimonidazole binding in the infarcted hemisphere, when rats with 60 minutes of MCAO, immediately after establishment of cerebral reflow, had 3×15 minutes intermittent hind limb ischemia followed by 24-hour survival. We analysed the middle cerebral arteries from animals with 60 minutes of MCAO and early remote post-conditioning, followed by 30 minutes, 24, or 48 hours of reflow. At 24 hours of reflow increases in phosphorylated protein kinase C-alpha with concomitantly increased levels of p38 phosphorylation were observed.
CONCLUSIONS: Our investigation demonstrates that pimonidazole can be used for quantifying ischemic impact in stroke, even after very short survival times. It furthermore shows that early remote post-conditioning reduces ischemic damage, probably through hyperpolarization and reduced reflow vasospasm in the conduit middle cerebral arteries.
Henrik Hasseldam; Jacob Hansen-Schwartz; Nina Munkholm; Jack Hou; Flemming F Johansen
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Neurological research     Volume:  35     ISSN:  1743-1328     ISO Abbreviation:  Neurol. Res.     Publication Date:  2013 May 
Date Detail:
Created Date:  2013-04-01     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7905298     Medline TA:  Neurol Res     Country:  England    
Other Details:
Languages:  eng     Pagination:  336-43     Citation Subset:  IM    
University of Copenhagen, Denmark.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Defining pulsatility during continuous-flow ventricular assist device support.
Next Document:  Continuous cerebrovascular reactivity monitoring and autoregulation monitoring identify similar lowe...