Document Detail


Relationship between streaming potential and compressive stress in bovine intervertebral tissue.
MedLine Citation:
PMID:  21763660     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The intervertebral disc is formed by the nucleus pulposus (NP) and annulus fibrosus (AF), and intervertebral tissue contains a large amount of negatively charged proteoglycan. When this tissue becomes deformed, a streaming potential is induced by liquid flow with positive ions. The anisotropic property of the AF tissue is caused by the structural anisotropy of the solid phase and the liquid phase flowing into the tissue with the streaming potential. This study investigated the relationship between the streaming potential and applied stress in bovine intervertebral tissue while focusing on the anisotropy and loading location. Column-shaped specimens, 5.5mm in diameter and 3mm thick, were prepared from the tissue of the AF, NP and the annulus-nucleus transition region (AN). The loading direction of each specimen was oriented in the spinal axial direction, as well as in the circumferential and radial directions of the spine considering the anisotropic properties of the AF tissue. The streaming potential changed linearly with stress in all specimens. The linear coefficients k(e) of the relationship between stress and streaming potential depended on the extracted positions. These coefficients were not affected by the anisotropy of the AF tissue. In addition, these coefficients were lower in AF than in NP specimens. Except in the NP specimen, the k(e) values were higher under faster compression rate conditions. In cyclic compression loading the streaming potential changed linearly with compressive stress, regardless of differences in the tissue and load frequency.
Authors:
Kazuhiro Fujisaki; Shigeru Tadano; Nozomu Asano
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-7-14
Journal Detail:
Title:  Journal of biomechanics     Volume:  -     ISSN:  1873-2380     ISO Abbreviation:  -     Publication Date:  2011 Jul 
Date Detail:
Created Date:  2011-7-18     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0157375     Medline TA:  J Biomech     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2011 Elsevier Ltd. All rights reserved.
Affiliation:
Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal ao...
Next Document:  Are the results of customary methods for analyzing dioxin and dioxin-like compound congener profiles...