Document Detail

Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference.
MedLine Citation:
PMID:  14759825     Owner:  NLM     Status:  Publisher    
Effects of shoot water potential (Psi) and leaf-to-atmosphere vapor pressure difference (VPD) on gas exchange of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), and aspen (Populus tremuloides Michx.) were investigated at the northern edge of the boreal forest in Manitoba, Canada. Laboratory measurements on cut branches showed that net photosynthesis (A(n)) and mesophyll conductance (g(m)) of jack pine and g(m) of black spruce did not respond to Psi until a threshold Psi was reached below which they decreased linearly. Photosynthesis of black spruce decreased slowly with decreasing Psi above the threshold and declined more rapidly thereafter. The threshold Psi was lower in black spruce than in jack pine. However, stomatal conductance (g(s)) of black spruce decreased continuously with decreasing Psi, whereas g(s) of jack pine showed a threshold response. Mesophyll limitations were primarily responsible for the decline in A(n) at low Psi for jack pine and black spruce in the middle of the growing season, but stomatal limitations became more important later in the season. Field measurements on in situ branches on warm sunny days showed that both conifer species maintained Psi above the corresponding threshold and there was no evidence of Psi limitation on A(n) of jack pine, black spruce or aspen. Vapor pressure difference was important in regulating gas exchange in all three species. An empirical model was used to quantify the g(s) response to VPD. When parameterized with laboratory data for the conifers, the model also fit the corresponding field data. When parameterized with field data, the model showed that stomata of aspen were the most sensitive of the three species to VPD, and stomata of black spruce were the least sensitive. For jack pine and aspen, stomata of foliage in the upper canopy were significantly more sensitive than stomata of foliage in the lower canopy. Vapor pressure difference had a greater impact on A(n) of aspen than on A(n) of the conifers as a result of aspen's greater stomatal sensitivity to VPD and greater slope of the relationship between A(n) and intercellular CO(2) concentration (C(i)). During the 1994 growing season, VPD averaged 1.0 kPa, corresponding to ratios of C(i) to ambient CO(2) of 0.77, 0.71 and 0.81 for jack pine, black spruce and aspen, respectively. We conclude that increases in VPD at the leaf surface in response to climate change should affect the absolute CO(2) and H(2)O fluxes per unit leaf area of the aspen component of a boreal forest landscape more than those of the conifer component.
Qing-Lai Dang; Hank A. Margolis; Marie R. Coyea; Mikailou Sy; G. James Collatz
Related Documents :
20194305 - Emergence of ethnic differences in blood pressure in adolescence: the determinants of a...
8669345 - The relationship between white matter low attenuation on brain ct and vascular risk fac...
17253895 - Prevalence of elevated blood pressure in hispanic versus non-hispanic 6th graders.
16937775 - Racial (black-white) contrasts of risk for hypertensive disease in youth have implicati...
24824955 - Autonomic cardiovascular modulation with three different anesthetic strategies during n...
3605735 - "defasciculation" with metocurine prevents succinylcholine-induced increases in intracr...
Publication Detail:
Journal Detail:
Title:  Tree physiology     Volume:  17     ISSN:  0829-318X     ISO Abbreviation:  Tree Physiol.     Publication Date:    1997 Aug-Sep
Date Detail:
Created Date:  2004-Feb-4     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100955338     Medline TA:  Tree Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  521-535     Citation Subset:  -    
Centre de recherche en biologie forestière, Pavillon Abitibi-Price, Université Laval, Sainte-Foy, Québec G1K 7P4, Canada.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological metho...
Next Document:  Automated measurements of CO(2) exchange at the moss surface of a black spruce forest.