Document Detail


Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis.
MedLine Citation:
PMID:  25450328     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Oxidative mitochondrial damage is closely linked to inflammation and cell death, but low levels of reactive oxygen and nitrogen species serve as signals that involve mitochondrial repair and resolution of inflammation. More specifically, cytoprotection relies on the elimination of damaged mitochondria by selective autophagy (mitophagy) during mitochondrial quality control. This aim of this study was to identify and localize mitophagy in mouse lung as a potentially upregulatable redox response to Staphylococcus aureus sepsis. Fibrin clots loaded with S. aureus (1×10(7) CFU) were implanted abdominally into anesthetized C57BL/6 and B6.129X1-Nfe2l2tm1Ywk/J (Nrf2(-/-)) mice. At the time of implantation, mice were given vancomycin (6mg/kg) and fluid resuscitation. Mouse lungs were harvested at 0, 6, 24, and 48h for bronchoalveolar lavage (BAL), Western blot analysis, and qRT-PCR. To localize mitochondria with autophagy protein LC3, we used lung immunofluorescence staining in LC3-GFP transgenic mice. In C57BL/6 mice, sepsis-induced pulmonary inflammation was detected by significant increases in mRNA for the inflammatory markers IL-1β and TNF-α at 6 and 24h, respectively. BAL cell count and protein increased. Sepsis suppressed lung Beclin-1 protein, but not mRNA, suggesting activation of canonical autophagy. Notably sepsis also increased the LC3-II autophagosome marker, as well as the lung׳s noncanonical autophagy pathway as evidenced by loss of p62, a redox-regulated scaffolding protein of the autophagosome. In LC3-GFP mouse lungs, immunofluorescence staining showed colocalization of LC3-II to mitochondria, mainly in type 2 epithelium and alveolar macrophages. In contrast, marked accumulation of p62, as well as attenuation of LC3-II in Nrf2-knockout mice supported an overall decrease in autophagic turnover. The downregulation of canonical autophagy during sepsis may contribute to lung inflammation, whereas the switch to noncanonical autophagy selectively removes damaged mitochondria and accompanies tissue repair and cell survival. Furthermore, mitophagy in the alveolar region appears to depend on activation of Nrf2. Thus, efforts to promote mitophagy may be a useful therapeutic adjunct for acute lung injury in sepsis.
Authors:
Alan L Chang; Allison Ulrich; Hagir B Suliman; Claude A Piantadosi
Related Documents :
25111708 - Characterization of bpss1521 (bprd), a regulator of burkholderia pseudomallei virulence...
25352178 - Interleukin-17 is a critical target for the treatment of ankylosing enthesitis and psor...
25300578 - β-catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesi...
25339668 - Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susc...
1940048 - Amphotericin b selectively stimulates macrophages from high responder mouse strains.
18448398 - Effect of gonadectomy on hcc development in hbv transgenic mice.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-11-5
Journal Detail:
Title:  Free radical biology & medicine     Volume:  -     ISSN:  1873-4596     ISO Abbreviation:  Free Radic. Biol. Med.     Publication Date:  2014 Nov 
Date Detail:
Created Date:  2014-12-2     Completed Date:  -     Revised Date:  2014-12-3    
Medline Journal Info:
Nlm Unique ID:  8709159     Medline TA:  Free Radic Biol Med     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2014 Elsevier Inc. All rights reserved.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Collaboration between mitochondria and the nucleus is key to long life in Caenorhabditis elegans.
Next Document:  The metabolic state of cancer stem cells-a valid target for cancer therapy?