Document Detail

Redox processes inform multivariate transdifferentiation trajectories associated with TGFβ-induced epithelial-mesenchymal transition.
MedLine Citation:
PMID:  25088330     Owner:  NLM     Status:  In-Data-Review    
Phenotype reprogramming during transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) is an extensive and dynamic process, orchestrated by the integration of biological signaling across multiple time scales. As part of the numerous transcriptional changes necessary for EMT, TGFβ-initiated Smad3 signaling results in remodeling of the redox environment and decreased nucleophilic tone. Because Smad3 itself is susceptible to attenuated activity through antioxidants, the possibility of a positive feedback loop exists, albeit the time scales on which these mechanisms operate are quite different. We hypothesized that the decreased nucleophilic tone acquired during EMT promotes Smad3 signaling, enhancing acquisition and stabilization of the mesenchymal phenotype. Previous findings supporting such a mechanism were characterized independent of each other; we sought to investigate these relationships within a singular experimental context. In this study, we characterized multivariate representations of phenotype as they evolved over time, specifically measuring expression of epithelial/mesenchymal differentiation, redox regulators, and Smad transcription factors. In-cell Western (ICW) assays were developed to evaluate multivariate phenotype states as they developed during EMT. Principal component analysis (PCA) extracted anticorrelations between phospho-Smad3 (pSmad3) and Smad2/Smad4, which reflected a compensatory up-regulation of Smad2 and Smad4 following cessation of TGFβ signaling. Measuring transcript expression following EMT, we identified down-regulation of numerous antioxidant genes concomitant with up-regulation of NADPH oxidase 4 (NOX4) and multiple mesenchymal phenotype markers. TGFβ treatment increased CM-H2DCF-DA oxidation, decreased H2O2 degradation rates, and increased glutathione redox potential. Our findings suggest that the decreased nucleophilic tone during EMT coincides with the acquisition of a mesenchymal phenotype over too long a time scale to enable enhanced Smad3 phosphorylation during initiation of EMT. We further challenged the mesenchymal phenotype following EMT through antioxidant and TGFβ inhibitor treatments, which failed to induce a mesenchymal-epithelial transition (MET). Our characterization of multivariate phenotype dynamics during EMT indicates that the decrease in nucleophilic tone occurs alongside EMT; however, maintenance of the mesenchymal phenotype following EMT is independent of both the nascent redox state and the continuous TGFβ signaling.
Adam F Prasanphanich; C Andrew Arencibia; Melissa L Kemp
Publication Detail:
Type:  Journal Article     Date:  2014-08-01
Journal Detail:
Title:  Free radical biology & medicine     Volume:  76     ISSN:  1873-4596     ISO Abbreviation:  Free Radic. Biol. Med.     Publication Date:  2014 Nov 
Date Detail:
Created Date:  2014-12-03     Completed Date:  -     Revised Date:  2014-12-04    
Medline Journal Info:
Nlm Unique ID:  8709159     Medline TA:  Free Radic Biol Med     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1-13     Citation Subset:  IM    
Copyright Information:
Copyright © 2014 Elsevier Inc. All rights reserved.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Grant Support

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Validation of the handheld Lactate-Pro analyzer for measurement of blood L-lactate concentration in ...
Next Document:  Gold Nanowired: A Linear (Au25)n Polymer from Au25 Molecular Clusters.