Document Detail


Quorum sensing in biofilms - How to destroy the bacterial citadels or their cohesion/power?
MedLine Citation:
PMID:  21497662     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Biofilms or microbial communities formed by adherent and cohesive cells on cellular or inert substrata (like medical devices), are involved in ∼60% of all infections and characterized by moderate intensity symptoms, chronic evolution and resistance to antibiotics. Biofilms' pathogenicity, even of those formed by opportunistic microorganisms, is amplified by two major biofilm characteristics: 1) the increased resistance to antimicrobials; 2) the protection of cells against the host's defence mechanisms. The studies at the molecular level shown that the biofilms formation is controlled by cell-to-cell signalling mechanisms and the gene regulation during biofilm growth is due to the accumulation of signal molecules. In this regard, quorum sensing mechanism (QS) is defined as a cell-density dependent bacterial intercellular communication, involved in gene expression (e.g. virulence genes for exoenzymes, exopolysaccharides) and the consequent changed behaviour of biofilm's cells, including the resistance to stress conditions; this resistance is different of well known antibioresistance, being named phenotypical resistance or tolerance. Considering the differences in physiology and susceptibility to antibiotics of biofilm embedded bacteria, as well as their increased power against the host defence responses, there are necessary new strategies for prevention and therapy of biofilm associated infections. The dental plaque is a typical example of biofilm, involved in the ethiology of cariogenesis and periodontal diseases associated with local chronic inflammation and cytokines production. The genetical and phenotypical versatility of the biofilm's cells represent a challenge for discovering new methods of treatment and prevention of biofilm associated infections. A novel class of antibiofilm and antipathogenic therapeutics which are interfering with a new target - the QS pathway, not based on growth inhibition and called QS inhibitors, natural, with different origins or artificial, are now developing as an alternative to antibiotherapy.
Authors:
Veronica Lazar
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-4-8
Journal Detail:
Title:  Anaerobe     Volume:  -     ISSN:  1095-8274     ISO Abbreviation:  -     Publication Date:  2011 Apr 
Date Detail:
Created Date:  2011-4-18     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9505216     Medline TA:  Anaerobe     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2011. Published by Elsevier Ltd.
Affiliation:
University of Bucharest, Faculty of Biology, Dept. of Microbiology & Immunology, Aleea Portocalelor no. 1-3, 060101 Bucharest, Sector 6, Romania.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybrid...
Next Document:  Microbial ecology and quality assurance in food fermentation systems. The case of kefir grains appli...