Document Detail

Quantitative evaluation of the performance of an industrial benchtop enclosing hood.
MedLine Citation:
PMID:  23767998     Owner:  NLM     Status:  In-Data-Review    
Plain benchtop enclosing hoods are assumed to be highly effective in protecting workers from airborne contaminants, but there is little research published to support or rebut that assumption. The purpose of this research was to investigate the performance of a 36 in. wide, 30 in. high, and 40 in. deep benchtop enclosing hood. The study consisted of two parts: (1) investigating the effects of hood face velocity (five levels: 111, 140, 170, 200, and 229 ft/min) and wind tunnel cross-draft velocity (five levels: 14, 26, 36, 46, and 57 ft/min) on a plain benchtop enclosing hood, and (2) studying the effects of specific interventions (no-intervention, collar flange, bottom flange, cowling, and sash) added onto the same enclosing hood. A tracer gas method was used to study the hood's performance inside a 9 ft high, 12 ft wide, and 40 ft long wind tunnel. Freon-134a concentrations were measured at the mouth and nose of an anthropometrically scaled, heated, breathing manikin holding a source between its hands while standing at the enclosing hood's face. Roughly 3 L/min of pure Freon-134a mixed with 9 L/min of helium was released from the source during all tests. Results showed that hood face velocity, wind tunnel cross-draft velocity, and interventions had statistically significant effects (p < 0.05) on the concentrations measured at the manikin's breathing zone. Lower exposures were associated with higher face velocities and higher cross-draft velocities. The highest exposures occurred when the face velocity was at the lowest test value (111 ft/min), and the cross-draft velocity was at its lowest test value (14 ft/min). For the effects of interventions to the hood face, the results showed that flanges and the cowling failed to consistently reduce exposures and often exacerbated them. However, the customized sash reduced exposures to less than the detection limit of 0.1 ppm, so a similar sash should be considered when feasible. The hood face velocity should be at least 150 ft/min if a sash is not used.
Xinjian Kevin He; Steven E Guffey
Related Documents :
21288758 - Design, construction and validation of a computer controlled system for functional load...
16094118 - A single therapy for all subtypes of horizontal canal positional vertigo.
16973838 - Tests of general relativity from timing the double pulsar.
14616668 - Head-shaking nystagmus in patients with a vestibular schwannoma.
8985778 - Treatment with human chorionic gonadotrophin for cryptorchidism: clinical and histologi...
24497118 - Validation of hemostasis and coagulation assays: recommendations and guidelines.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of occupational and environmental hygiene     Volume:  10     ISSN:  1545-9632     ISO Abbreviation:  J Occup Environ Hyg     Publication Date:  2013 Aug 
Date Detail:
Created Date:  2013-06-17     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101189458     Medline TA:  J Occup Environ Hyg     Country:  England    
Other Details:
Languages:  eng     Pagination:  409-18     Citation Subset:  IM    
a Industrial and Management Systems Engineering, College of Engineering and Mineral Resources , West Virginia University , Morgantown , West Virginia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Socially Adjusted Synchrony in the Activity Profiles of Common Marmosets in Light-Dark Conditions.
Next Document:  High expression of wee1 is associated with malignancy in vulvar squamous cell carcinoma patients.