Document Detail

Protective effect of an aminothiazole compound against γ-radiation induced oxidative damage.
MedLine Citation:
PMID:  21923621     Owner:  NLM     Status:  Publisher    
Abstract Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. During radiotherapy of cancer, one of the undesirable side-effects is toxicity to normal cells. Compounds with antioxidant activities are being tried as 'prophylactic radioprotectants' to overcome this problem. We evaluated the protective effect of an aminothiazole compound, in the form of dendrodoine analogue (DA) originally derived from a marine tunicate, against γ-radiation-induced damage to lipid, protein, and DNA besides its cytotoxicity. Oxidative damage was examined by different biochemcial assays. Our studies reveal that DA gave significant protection, in fairly low concentrations, against damage induced by γ-radiation to rat liver mitochondria, plasmid pBR322 DNA, and mouse splenic lymphocytes in vitro. It also protected against oxidative damage in whole-body irradiated mice exposed to therapeutic dose of radiation (2 Gy) in vivo. Spleen, a major target organ for radiation damage, of the irradiated mice showed significant protection when treated with DA, as examined by histopathology. In conclusion, due to the possible protective effects against normal cells/tissues both in vitro and in vivo, DA shows potential to be a radioprotector for possible use during radiotherapy.
Strayo De; Thomas P A Devasagayam
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-9-19
Journal Detail:
Title:  Free radical research     Volume:  -     ISSN:  1029-2470     ISO Abbreviation:  -     Publication Date:  2011 Sep 
Date Detail:
Created Date:  2011-9-19     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9423872     Medline TA:  Free Radic Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in can...
Next Document:  Simultaneous estimation of hydroxychavicol and chlorogenic acid from Piper betel L. through RP-HPLC.