Document Detail

Protective Effects of Rosiglitazone on Retinal Neuronal Damage in Diabetic Rats.
MedLine Citation:
PMID:  21599458     Owner:  NLM     Status:  Publisher    
Purpose: To investigate whether rosiglitazone has a protective effect on retinal neural cells in diabetic rats, and to determine a possible anti-apoptotic mechanism. Methods: Streptozotocin-induced diabetic rats and control animals were randomized evenly to receive rosiglitazone or not, effects were examined after 24 weeks. Retinal histology was examined and quantified using light microscopy; Apoptosis of retinal neural cells was determined by terminal dUTP nick-end labeling assay; Retinal ultrastructure was examined by transmission electron microscopy; Proteins levels of cleaved caspase-3, signal transduction and activators of transcription-3 (STAT3), phospho-STAT3 (p-STAT3), and suppressors of cytokine signaling 3 (SOCS3) in the retinal tissues were also determined by western blotting. Results: Compared with the control group, the thickness of the overall retina, inner plexiform layer, inner nuclear layer reduced by 13.8%, 27.4% and 4.2%, respectively (p < 0.05) in the diabetic group after 24 weeks; The number of cells in the ganglion cell layer was also decreased by 18.6% (p < 0.05). There was apoptosis of retinal neurons in the diabetic rats. Diabetes also induced mitochondrial metamorphosis in ganglion cells and evident pyknosis in the outer nuclear layer. These effects were associated with increased levels of cleaved caspase-3, p-STAT3, and decreased levels of SOCS3. After treatment of rosiglitazone, the thickness of the retina and the number of cells in the ganglion cell layer were significantly greater than those in the diabetic group (p < 0.05). Rosiglitazone also attenuated the diabetic-induced apoptosis of retinal neurons and mitochondrial metamorphosis in ganglion cells. Consistent with these effects, rosiglitazone treatment also decreased cleaved caspase-3 and p-STAT3 expression and, at the same time, increased SOCS3 expression. Conclusions: Rosiglitazone attenuated diabetes-induced apoptosis in retinal neurons through activities that may involve inhibition of p-STAT3 by induction of SOCS3, which suggested that rosiglitazone might be used to prevent retinal neuronal damage in diabetes mellitus.
Peiyu Li; Xun Xu; Zhi Zheng; Bijun Zhu; Yuhua Shi; Kun Liu
Related Documents :
24819248 - An insight into structural and biological relevance of the t/r transition of the b-chai...
21723508 - Adiponectin is required for pparγ-mediated improvement of endothelial function in diab...
8472858 - Vanadate treatment of diabetic rats reverses the impaired expression of genes involved ...
21600928 - Mcs-18, a novel natural plant product prevents autoimmune diabetes.
15807908 - Accuracy of physiologic dead space measurements in patients with acute respiratory dist...
16735958 - Postprandial hyperglycaemia: to treat or not to treat?
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-5-20
Journal Detail:
Title:  Current eye research     Volume:  -     ISSN:  1460-2202     ISO Abbreviation:  -     Publication Date:  2011 May 
Date Detail:
Created Date:  2011-5-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8104312     Medline TA:  Curr Eye Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Department of Ophthalmology, Shanghai Jiaotong University affiliated Shanghai First People's Hospital, Shanghai, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Polymorphisms of the DNA Repair Genes XPD and XRCC1 and the Risk of Age-Related Cataract Development...
Next Document:  Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules...