Document Detail


Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1.
MedLine Citation:
PMID:  22833520     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P < 0.0001) levels of 8-oxo-2'-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r = 0.2) with loss of GSTP1 activity (34%; P < 0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H(2) O(2) -mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H(2) O(2) , these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused reexpression of GSTP1, which protected the cells from H(2) O(2) -mediated DNA damage through decreased ROS production compared to nonexposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer. © 2012 Wiley Periodicals, Inc.
Authors:
Rajnee Kanwal; Mitali Pandey; Natarajan Bhaskaran; Gregory T Maclennan; Pingfu Fu; Lee E Ponsky; Sanjay Gupta
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-7-25
Journal Detail:
Title:  Molecular carcinogenesis     Volume:  -     ISSN:  1098-2744     ISO Abbreviation:  -     Publication Date:  2012 Jul 
Date Detail:
Created Date:  2012-7-26     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8811105     Medline TA:  Mol Carcinog     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Wiley Periodicals, Inc.
Affiliation:
Department of Urology, Case Western Reserve University, Cleveland, Ohio.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Esthetic, functional, and prosthetic outcomes with implant-retained finger prostheses.
Next Document:  Impact of perceived social support on the mental health and health-related quality of life in cancer...