Document Detail

Pronuclear morphology evaluation in in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) cycles: a retrospective clinical review.
Jump to Full Text
MedLine Citation:
PMID:  23282023     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: The assessment of the embryo quality is crucial to maintain an high pregnancy rate and to reduce the risk of multiple pregnancy. The evaluation of the pronuclear and nucleolar characteristics of human zygote have been proposed as an indicator of embryo development and chromosomal complement. The aim of the current study was to assess the role of pronuclear morphology evaluation in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) cycles.
METHODS: Retrospective clinical analysis on 755 non-elective transfers of only one embryo (ET). Embryo assessment was performed in days 1 and 2. Clinical and biological data were recorded and analyzed according to embryo and/or pronuclear morphology.
RESULTS: Both pronuclear and embryo morphology were significantly related to clinical pregnancy and live-birth rates. No significant difference in clinical pregnancy and live-birth rates was detected when the pronuclear and embryo morphology assessments were combined. Embryo morphology and maternal age were the only independent predictors of favorable outcome by logistic regression analysis.
CONCLUSIONS: Pronuclear evaluation is effective to select the best zygotes if ET is performed at day 1, whereas it did not improve the clinical outcomes when combined with embryo morphology evaluation in day 2.
Authors:
Alessia Nicoli; Francesco Capodanno; Ilaria Rondini; Barbara Valli; Maria Teresa Villani; Daria Morini; Leonardo De Pascalis; Stefano Palomba; Giovanni Battista La Sala
Related Documents :
22377693 - First-trimester screening for neural tube defects using alpha-fetoprotein.
20644693 - International collaboration on air pollution and pregnancy outcomes (icappo).
11399583 - Malignancy: case report: acute promyelocytic leukemia in late pregnancy. successful tre...
Publication Detail:
Type:  Journal Article     Date:  2013-01-03
Journal Detail:
Title:  Journal of ovarian research     Volume:  6     ISSN:  1757-2215     ISO Abbreviation:  J Ovarian Res     Publication Date:  2013  
Date Detail:
Created Date:  2013-01-15     Completed Date:  2013-01-16     Revised Date:  2013-02-15    
Medline Journal Info:
Nlm Unique ID:  101474849     Medline TA:  J Ovarian Res     Country:  England    
Other Details:
Languages:  eng     Pagination:  1     Citation Subset:  -    
Affiliation:
Department of Obstetrics, Gynecology and Pediatrics, Sterility Centre P, Bertocchi, Obstetrics and Gynecology Unit, A,O, S,Maria Nuova, IRCCS, Reggio Emilia and University of Modena, Reggio Emilia, Italy. nicoli.alessia@asmn.re.it.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Ovarian Res
Journal ID (iso-abbrev): J Ovarian Res
ISSN: 1757-2215
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2013 Nicoli et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 21 Month: 9 Year: 2012
Accepted Day: 15 Month: 12 Year: 2012
collection publication date: Year: 2013
Electronic publication date: Day: 3 Month: 1 Year: 2013
Volume: 6First Page: 1 Last Page: 1
PubMed Id: 23282023
ID: 3544622
Publisher Id: 1757-2215-6-1
DOI: 10.1186/1757-2215-6-1

Pronuclear morphology evaluation in in vitro fertilization (IVF) / intracytoplasmic sperm injection (ICSI) cycles: a retrospective clinical review
Alessia Nicoli1 Email: nicoli.alessia@asmn.re.it
Francesco Capodanno1 Email: capodanno.francesco@asmn.re.it
Ilaria Rondini1 Email: rondini.ilaria@asmn.re.it
Barbara Valli1 Email: valli.barbara@asmn.re.it
Maria Teresa Villani1 Email: villani.mariateresa@asmn.re.it
Daria Morini1 Email: morini.daria@asmn.re.it
Leonardo De Pascalis2 Email: depascalis.leonardo@asmn.re.it
Stefano Palomba1 Email: stefanopalomba@tin.it
Giovanni Battista La Sala1 Email: lasala.giovanni@asmn.re.it
1Department of Obstetrics, Gynecology and Pediatrics, Sterility Centre P. Bertocchi, Obstetrics and Gynecology Unit, A.O. S.Maria Nuova, IRCCS, Reggio Emilia and University of Modena, Reggio Emilia, Italy
2Department of Psycology, University of Bologna, Bologna, Italy

Background

The selection of the best embryo(s) to transfer is a crucial point in in vitro fertilization (IVF)/ intracytoplasmic sperm injection (ICSI) procedures to maintain a high performance in terms of pregnancy rate and to reduce the risk of multiple pregnancies.

Several methodologies have been proposed and employed for embryo selection, but their clinical efficacy is still extremely debated and considered suboptimal [1-3].

The study of the pronuclear and nucleolar characteristics of human zygote has been proposed as an indicator of embryo development and competence [4-10]. Previous data have suggested that zygote-score could be an efficient tool for embryo selection if combined with embryo morphology evaluation on days 2 and 3 [10,11]. In particular, the morphological characteristics of the human zygote may suggest an increased risk of arrest of the embryo [11]. Moreover, to date, there is not definitive consensus about the clinical efficacy of the zygote pronuclear morphology. In fact, other Authors suggested that embryo morphology has a better prognostic value than zygote-score in embryo selection [12-14], and that pronuclear scoring system has any advantage to evaluate embryo quality [15].

Based on these considerations, the current study was aimed to evaluate if the pronuclear morphology evaluation improves the clinical outcomes in IVF/ICSI when combined with embryo morphology assessment.


Materials and methods
Patients

The current was a non-interventional, retrospective single centre review.

Institutional Review Board approval was not required since all couples included underwent a routine IVF/ICSI program in our Reproductive Unit, and no additional/experimental intervention was performed.

All IVF/ICSI cycles performed between April 2008 and November 2010 were reviewed.

All cycles characterized by the transfer of one embryo were selected and included in the final analysis. Were excluded cycles in which with more than one oocyte was fertilized and cleaved.

For any cycle we collected all available clinical and biological data. Specifically, we recorded the patients' characteristics, the controlled ovarian stimulation regimens, the drugs and protocols used for luteal phase support, the characteristics of oocytes retrieved and embryos transfer, the pronuclear and embryo morphology. Implantation, pregnancy, abortion and live-birth rates were also noted.

Ovarian stimulation and oocyte retrieval

In all cases the controlled ovarian stimulation was achieved using individualized protocols of recombinant-follicle stimulating hormone (rFSH; Gonal F, Serono, Rome, Italy) in down-regulated cycles. A serum estradiol concentrations <50 pg/mL and an absence of follicles having a mean diameter higher than 10 mm were considered as criteria for gonadotropin administration. The ovarian response was monitored by use of serum estradiol assays and serial ultrasonographies.

In presence of at least one follicle with a mean diameter equal or higher than 17 mm was observed, 10,000 IU human chorionic gonadotropin (hCG; Gonasi, IBSA, Milan, Italy) or 250 μg recombinant hCG (Ovitrelle, Serono, Rome, Italy) were intramuscularly administered. Oocyte retrieval was performed 34 to 36 hours after hCG administration by ultrasound-guided transvaginal aspiration.

Semen preparation

Semen samples were collected by masturbation after 3–5 days of abstinence. The preparation for conventional IVF or ICSI was performed following the World Health Organization standard protocol [16,17].

Oocyte insemination

For the conventional IVF procedures, oocytes were cultured individually and inseminated in microdrops of fresh medium (Cook IVF, Melbourne, Australia) under mineral oil with 100,000 activated spermatozoa. For ICSI procedure, after the removal of the cumulus and corona cells, oocytes nuclear maturation assessment was performed using an inverted microscope to ensure the injection of metaphase II oocytes exclusively [18].

Assessment of fertilization/cleavage

Oocyte fertilization was assessed at 18–20 hours (day 1) from insemination/injection and confirmed by the presence of 2 pronuclei (2PN) and the alignment of nucleolar precursor bodies (NPB). At same time, the pronuclear morphological score was assessed [4]. The observation of 2PN was performed using an inverted microscope with Hoffman modulation contrast at ×400 magnification (TE 2000 U, Nikon Corp., Japan). Zygotes with simultaneously juxtaposed and centralized PN, nucleoli of large size and orientated, and orientation of polar bodies in the longitudinal axis of PN were classified as Z1 and considered as the best zygote morphology [4,5,19]. Zygotes having all other configurations were classified as Z2.

ET was performed after 48 hrs (day 2) of embryo culture. During embryo observation five parameters were classified: cleavage symmetry, blastomere shape and size, cytoplasmic aspect, presence of fragmentation and of blastomere multi/micronucleation. Embryos characterized by symmetric cleavage, regular blastomeres sheep and size, absence of any cytoplasmic anomalies such as dark areas, granulations and vacuole, blastomeres multinucleation (≥ 2 nuclei per blastomere) or micronucleation were considered as grade I embryos. Grade II embryos presented slightly irregular blastomeres sheep and size, fragmentation ≤ 10%, and small cytoplasmic vacuoles. Grade III embryos were characterized by asymmetric cleavage, highly irregular blastomeres sheep and size, fragmentation among 10-30%, dark cytoplasm, cytoplasmic vacuoles and multinucleation. Finally, grade IV embryos displayed asymmetric cleavage, severe irregular blastomeres sheep and size, fragmentation among 30-50%, dark cytoplasm with massive presence of vacuoles. ETs of grades I and II embryos were defined as High Quality Embryo ET (HQE ET), whereas ETs of grades III and IV embryos as Poor Quality Embryo ET (PQE ET).

Embryo transfer and establishment of pregnancy

All patients received intramuscular (100 mg/day; Prontogest; IBSA, Milan, Italy) or transvaginal supplemental progesterone (600 mg/day; Prometrium, Rottapharm, Milan, Italy) for 15 days.

In each case, biochemical pregnancy was determined 12 days after ET by a positive quantitative serum β-hCG assay >10 IU. In case of positive pregnancy test, the hormonal support was continued until 35 days after the ET. Clinical pregnancy was defined as one embryo with heart beat revealed by transvaginal ultrasonography at 5 weeks after ET. Because of only one embryo was transferred in each ET, the clinical pregnancy was equivalent to the embryo implantation.

Statistical analysis

The normal distribution of continuous variables was evaluated with the use of the Kolmogrov-Smirnov test, and continuous data were expressed as the mean ± standard deviation (SD).

Continuous data were analyzed by Student t test for unpaired data. For categorical variables, the Pearson Chi square test was performed; Fisher’s exact test was used for the frequency tables when more than 20% of the expected values were lower than five.

To investigate which of the variables studied could best predict the chances of a clinical pregnancy and live-birth, a binary logistic regression was performed, using embryo quality, insemination technique and pronuclear morphology as predictors.

For all tests, the statistical significance level was set at P < 0.05.

Analysis was performed using SPSS version 20 for Microsoft Office.


Results

In the study period, 2,212 IVF/ICSI cycles were screened and 755 cycles (755/2,212, 34.2%) were included in the final analysis. Specifically, 293 and 462 cycles of IVF (293/755, 38.8%) and ICSI (462/755, 61.2%) programs were studied, respectively. One thousand and two hundred five cycles (1.205/2.212, 54.4%) were excluded because of more then one embryo was transferred, and 252 cycles (252/2.212, 11.4%) because of ET was not performed for fertilization failure or cryopreservation of all oocytes/embryos.

A statistically significant higher clinical pregnancy [17/139 (12.2%) vs. 39/616 (6.3%); P = 0.017] and live-birth [13/139 (9.4%) vs. 30/616 (4.9%); P = 0.039] rates were observed in ETs with embryos derived from Z1 zygotes (Z1 ETs) compared to ETs with embryos derived from Z2 zygotes (Z2 ETs). Similarly, a statistically significant higher clinical pregnancy [45/450 (10.0%) vs. 11/305 (3.6%); P = 0.001] and live-birth [34/450 (7.6%) vs. 9/305 (3.0%); P = 0.007] rates were observed in HQE ETs compared to PQE ETs (Table 1).

In Table 2 are showed the clinical pregnancy and live-birth rates per ET according to PN and embryo morphology.

The distribution of PN and embryo morphology was significantly different (P < 0.05) between patients who had and who did not had a clinical pregnancy and/or a live-birth (Table 2). The HQE-Z1 and PQE-Z2 ETs showed, respectively, the highest and lowest clinical pregnancy and live-birth rates (Table 2). No significant difference between HQE-Z1 and HQE-Z2 ETs and between PQE-Z1 and PQE-Z2 ETs was detected in clinical pregnancy (P = 0.093 and P = 0.450 for HQE-Z1 vs. HQE-Z2 ETs and for PQE-Z1 vs. PQE-Z2 ETs, respectively) and live-birth rates (P = 0.086 and P = 0.997 for HQE-Z1 vs. HQE-Z2 ETs and for PQE-Z1 vs. PQE-Z2 ETs, respectively) (Table 2).

Finally, using the binary logistic regression to evaluate the best predictor of clinical pregnancy and live-birth only the embryo morphology and the maternal age resulted independent predictors (Table 3).


Discussion

To date, the evaluation of pronuclear and embryo morphologies is a common practice in ART laboratories to select the best embryos to transfer. Even if several data regarding the clinical efficacy of pronuclear morphology evaluation have published [4-13,17], the current is the first clinical study reporting reproductive data of patients submitted to the transfer of one embryo because of only one oocyte was fertilized and/or cleaved. In fact, at our knowledge, only Salumets et al.[20] included in their analysis reproductive data of a single embryo transferred, even if this was “elective” [20].

The analysis of this specific cohort of patients permitted to exclude a priori the bias of embryo selection performed by the operator, even if the overall ART clinical outcomes were, as expected, very poor.

Firstly, our data suggest that both pronuclear and embryo morphology evaluations have a prognostic value in the prediction of clinical pregnancy in IVF/ICSI procedures. Specifically, our data confirm the efficacy of the pronuclear morphology evaluation to predict the clinical pregnancy [4-11,21]. At this regard, current findings highlight that the pronuclear morphology is an important tool not only to individuate abnormal fertilizations (only 1 PN or more than 2 PN) but to select zygotes when ET is performed at day 1, as recently recommended by the European Society of Human Reproduction and Embryology (ESHRE) [1].

Secondly, even if the HQE-Z1 and PQE-Z2 ETs resulted respectively closely related to the highest and lowest reproductive performances, the pronuclear morphology evaluation seemed to give limited additional information for the selection of the embryos to transfer at day 2 [22]. The un-effectiveness of the pronuclear morphology evaluation to improve the embryo selection was observed both in case of high- and low-quality embryos. In fact, the reproductive outcomes did not change after ET of embryos with the same quality deriving from zygotes of different morphology, i.e. HQE-Z1 vs. HQE-Z2 and PQE-Z1 vs. PQE-Z2.

Finally, our findings demonstrate by binary logistic regression analysis that, after correction for confounders, only the embryo morphology evaluation at day 2 resulted an independent predictors of clinical pregnancy and live-birth.

In conclusion, the current study confirm that pronuclear morphology evaluation is effective to assess the oocyte fertilization and to select the best zygotes if ET is performed at day 1, and suggest that its role for selecting the best embryo to transfer at day 2 is limited. Probably, as suggested by Montag et al. [23], the process of pronuclear formation is a highly dynamic mechanism, hardly resalable in a static evaluation. Further randomized controlled clinical trials on well selected population are needed to confirm or deny our conclusions.


Competing interests

The authors declare that they have no conflict of interests.


Authors’ contributions

AN and FC have made substantial contributions to conception and design, BV, DM and MTV have been involved in drafting the manuscript, IR has contributed to the acquisition of the data and revised the manuscript critically, LDP contributed to the analysis and interpretation of data and SP and GB LS have given final approval of the version to be published. All authors read and approved the final manuscript.


References
Alpha Scientist in Reproductive Medicine and ESHRE Special Interest Group of EmbryologyThe Istambul consensus workshop on embryo assessment: proceedings of an expert meetingHum ReprodYear: 2011261270128321502182
Hardarson T,Ahlström A,Rogberg L,Botros L,Hillensjö T,Westlander G,et al. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trialHum ReprodYear: 201227899610.1093/humrep/der37322068638
Uyar A,Seli E,Embryo assessment strategies and their validation for clinical use: a critical analysis of methodologyCurr Opin Obstet GynecolYear: 20122414115010.1097/GCO.0b013e328352cd1722487726
Gianaroli L,Magli MC,Ferraretti AP,Fortini D,Greco N,Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selectionFertil SterilYear: 20038034134910.1016/S0015-0282(03)00596-X12909497
Scott L,Pronuclear scoring as a predictor of embryo developmentReprod Biomed OnlineYear: 2003620121410.1016/S1472-6483(10)61711-712676001
Payne JF,Raburn DJ,Couchman GM,Price TM,Jamison MG,Walmer DK,Relationship between pre-embryo pronuclear morphology (zygote score) and standard day 2 or 3 embryo morphology with regard to assisted reproductive technique outcomesFertil SterilYear: 20058490090910.1016/j.fertnstert.2005.04.04716213842
Chen C,Kattera S,Comparison of pronuclear zygote morphology and early cleavage status of zygotes as additional criteria in the selection of day 3 embryos: a randomized studyFertil SterilYear: 20068534735210.1016/j.fertnstert.2005.07.131916595210
Gianaroli L,Magli MC,Ferraretti AP,Lappi M,Borghi E,Ermini B,Oocyte euploidy, pronuclear zygote morphology and embryo chromosomal complementHum ReprodYear: 20072224124916936301
Alvarez C,Taronger R,García-Garrido C,de González MG,Zygote score and status 1 or 2 days after cleavage and assisted reproduction outcomeInt J Gynaecol ObstetYear: 2008101162010.1016/j.ijgo.2007.10.02118164305
Maille L,Bergere M,Lemoine E,Camier B,Prevost JF,Bourdrel JM,Hammoud I,Selva J,Vialard F,Pronuclear morphology differs between women more than 38 and women less than 30 years of ageReprod Biomed OnlineYear: 20091836737310.1016/S1472-6483(10)60095-819298736
Zamora RB,Sánchez RV,Pérez JG,Díaz RR,Quintana DB,Bethencourt JC,Human zygote morphological indicators of higher rate of arrest at the first cleavage stageZygoteYear: 20102716
James AN,Hennessy S,Reggio B,Wiemer K,Larsen F,Cohen J,The limited importance of pronuclear scoring of human zygotesHum ReprodYear: 2006211599160410.1093/humrep/del01316488905
Nicoli A,Valli B,Di Girolamo R,Di Tommaso B,Gallinelli A,La Sala GB,Limited importance of pre-embryo pronuclear morphology (zygote score) in assisted reproduction outcome in the absence of embryo cryopreservationFertil SterilYear: 2007881167117310.1016/j.fertnstert.2007.01.06617467704
Weitzman VN,Schnee-Riesz J,Benadiva C,Nulsen J,Siano L,Maier D,Predictive value of embryo grading for embryos with known outcomesFertil SterilYear: 20109365866210.1016/j.fertnstert.2009.02.03219410247
Bar-Yoseph H,Levy A,Sonin Y,Alboteanu S,Levitas E,Lunenfeld E,Har-Vardi I,Morphological embryo assessment: reevaluationFertil SterilYear: 2011951624162810.1016/j.fertnstert.2011.01.03421316045
World Health OrganizationLaboratory manual for the examination of human semen and sperm-cervical mucus interactionYear: 19994New York: Cambridge University Press
Nicoli A,Capodanno F,Moscato L,Rondini I,Villani MT,Tuzio A,La Sala GB,Analysis of pronuclear zygote configurations in 459 clinical pregnancies obtained with assisted reproductive technique proceduresReprod Biol EndocrinolYear: 201087710.1186/1477-7827-8-7720579351
Palermo G,Joris H,Devroey P,Van-Steirteghem AC,Pregnancies after intracytoplasmic injection of a single spermatozoon into an oocyteLancetYear: 1992340171810.1016/0140-6736(92)92425-F1351601
Scott L,Alvero R,Leondires M,Miller B,The morphology of human pronuclear embryos is positively related to blastocyst development and implantationHum ReprodYear: 2000152394240310.1093/humrep/15.11.239411056141
Salumets A,Hydén-Granskog C,Suikkari AM,Tiitinen A,Tuuri T,The predictive value of pronuclear morphology of zygotes in the assessment of human embryo qualityHum ReprodYear: 2001162177218110.1093/humrep/16.10.217711574512
Racowsky C,Ohno-Machado L,Kim J,Biggers JD,Is there an advantage in scoring early embryos on more than one day?Hum ReprodYear: 2009242104211310.1093/humrep/dep19819493872
Guerif F,Le Gouge A,Giraudeau B,Poindron J,Bidault R,Gasnier O,Royere D,Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryosHum ReprodYear: 2007221973198110.1093/humrep/dem10017496054
Montag M,Liebenthron J,Köster M,Which morphological scoring system is relevant in human embryo development?PlacentaYear: 201132S252S25621782239

Tables
[TableWrap ID: T1] Table 1 

Clinical outcomes analyzed according to embryo and pronuclear morphologies


  HQE ET
PQE ET
P value
(n., %) (n., %)
Total cycles
450, 59.6
305, 40.4
 
Maternal age (years)
36.83±3.88
36.48±4.04
0.234
Clinical pregnancy rate
44^/450, 9.8
11/305, 3.6
0.001
Singleton
42/44, 95.5*
11/11, 100.0
0.471
Implantation rate
44/450, 9.8
11/305, 3.6
0.001
Abortion rate
9/44, 20.5
2/11, 18.2
0.866
Live-birth rate
34/450, 7.6
9/305, 3.0
0.007
Gestational age at birth (weeks)
37.8±4.2
39.6±1.3
0.213
Birth weight (gr)
2979.3±798.3
3214.6±391.0
0.399
 
Z1 ET
Z2 ET
 
(n., %)
(n., %)
Total cycles
139
616
 
Maternal age (years)
36.22±3.71
36.79±3.99
0.123
Excellent quality embryos
105/139, 75.5
345/616, 56.0
<0.001
Clinical pregnancy rate
16^/139, 12.2
39/616, 6.3
0.017
Singleton
16/16, 100.0
37/39, 94.9*
0.356
Implantation rate
16/139, 11.5
39/616, 6.3
0.034
Abortion rate
2/16, 12.5
9/39, 23.1
0.712
Live-birth rate
13/139, 9.4
30/616, 4.9
0.039
Gestational age at birth (weeks)
37.3±5.1
38.5±3.1
0.351
Birth weight (gr) 2959.6±849.7 3058.4±692.2 0.691

^: one ectopic pregnancy; *: two sets of monozygotic twins.


[TableWrap ID: T2] Table 2 

Clinical pregnancy and live-birth rate analyzed according to pronuclear and embryo morphology


  Clinical pregnancy rate
Live-birth rate
No
Yes
Total
No
Yes
Total
(n., %) (n., %) (n., %) (n., %) (n., %) (n., %)
HQE ET
Z1
90, 85.7
15, 14.3
105, 100
93, 88.6
12, 11.4
105, 100
 
Z2
316, 91.6
29, 8.4
345, 100
323, 93.6
22, 6.4
345, 100
PQE ET
Z1
32, 94.1
2, 5.9
34, 100
33, 97.1
1, 2.9
34, 100
 
Z2
262, 96.7
9, 3.3
271, 100
263, 97.0
8, 3.0
271, 100
Total   700, 92.7 55, 7.4 755, 100 712, 94.3 43, 5.7 755, 100

The distribution pronuclear and embryo morphology was significantly (P < 0.05) different between patients who had and who did not had a clinical pregnancy and a live-birth.


[TableWrap ID: T3] Table 3 

Regression analysis using maternal age, embryo quality, insemination technique and pronuclear morphology as predictors of clinical pregnancy and delivery


  B ES P OR 95% CI
Lower Upper
Constant
 
 
 
 
 
 
Clinical pregnancy
−3.845
0.374
<0.001
0.021
 
 
Delivery
−4.084
0.417
<0.001
0.017
 
 
Maternal age
 
 
 
 
 
 
Clinical pregnancy
1.263
0.290
<0.001
3.535
2.002
6.244
Delivery
1.282
0.326
<0.001
3.604
1.904
6.821
Insemination technique
 
 
 
 
 
 
Clinical pregnancy
0.021
0.304
0.946
1.021
0.562
1.854
Delivery
0.074
0.341
0.828
1.077
0.552
2.099
Pronuclear morphology
 
 
 
 
 
 
Clinical pregnancy
0.481
0.320
0.132
1.618
0.865
3.029
Delivery
0.468
0.359
0.192
1.597
0.791
3.227
Embryo quality
 
 
 
 
 
 
Clinical pregnancy
1.078
0.353
0.002
2.938
1.470
5.871
Delivery 0.974 0.391 0.013 2.648 1.231 5.698

Model for clinical pregnancy prediction: χ2(4) = 33.445; P < 0.001; R2 = 0.106.

Model for delivery prediction: χ2(4) = 25.200; P < 0.001; R2 = 0.093.



Article Categories:
  • Review

Keywords: Embryo morphology, IVF, ICSI, Pregnancy, Pronuclear morphology, Live-birth.

Previous Document:  Primitive Environment control for preservation of pit relics in archaeology museums of China.
Next Document:  TranSeqAnnotator: large-scale analysis of transcriptomic data.