Document Detail

Probing the tunnelling site of electrons in strong field enhanced ionization of molecules.
MedLine Citation:
PMID:  23047671     Owner:  NLM     Status:  In-Data-Review    
Molecules show a much increased multiple ionization rate in a strong laser field as compared with atoms of similar ionization energy. A widely accepted model attributes this to the action of the joint fields of the adjacent ionic core and the laser on its neighbour inside the same molecule. The underlying physical picture for the enhanced ionization is that it is the up-field atom that gets ionized. However, this is still debated and remains unproven. Here we report an experimental verification of this long-standing prediction. This is accomplished by probing the two-site double ionization of ArXe, where the instantaneous field direction at the moment of electron release and the emission direction of the correlated ionizing centre are measured by detecting the recoil sum- and relative-momenta of the fragment ions. Our results unambiguously prove the intuitive picture of the enhanced multielectron dissociative ionization of molecules and clarify a long-standing controversy.
J Wu; M Meckel; L Ph H Schmidt; M Kunitski; S Voss; H Sann; H Kim; T Jahnke; A Czasch; R Dörner
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Nature communications     Volume:  3     ISSN:  2041-1723     ISO Abbreviation:  Nat Commun     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101528555     Medline TA:  Nat Commun     Country:  England    
Other Details:
Languages:  eng     Pagination:  1113     Citation Subset:  IM    
1] Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, D-60438 Frankfurt, Germany. [2] State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides.
Next Document:  Lightweight nanoporous metal hydroxide-rich zeotypes.