Document Detail

Prevalence of extended-spectrum beta-lactamase-producing bacteria in food.
Jump to Full Text
MedLine Citation:
PMID:  23093909     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae with Cefotaximase-München (CTX-M) enzymes are rapidly increasing worldwide and pose a threat to health care. ESBLs with CTX-M enzymes have been isolated from animals and different food products, but it is unknown if food imported from the Mediterranean area may be a possible reservoir of these bacteria. During 2007-2008, swab samples from food across different retail outlets (mostly food from the Mediterranean countries and Swedish chicken) were collected. Escherichia coli strains from Swedish meat and E. coli isolates from unspecified food from a Swedish food testing laboratory were also examined. In 349 of the 419 swab samples, growth of Enterobacteriaceae was found. In most of the samples, there was also growth of Gram-negative environmental bacteria. Air dry-cured products contained significantly less Enterobacteriaceae isolates compared to lettuces; however, none of the examined Enterobacteriaceae harbored ESBLs. This study did not support the theory that imported food from the Mediterranean area or Swedish domestic food might constitute an important vehicle for the dissemination of ESBL-producing Enterobacteriaceae; however, a spread from food to humans may have occurred after 2008.
Johan Tham; Mats Walder; Eva Melander; Inga Odenholt
Related Documents :
19033409 - Food intake patterns associated with incident type 2 diabetes: the insulin resistance a...
10075329 - Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic ...
16326659 - Longitudinal examination of homebound older adults who experience heightened food insuf...
19885179 - Automated computation of glycemic index for foodstuffs using continuous glucose monitor...
11032099 - Significant upper gastrointestinal events associated with conventional nsaid versus cel...
15483639 - Palatability and glucose, insulin and satiety responses of chickpea flour and extruded ...
12901649 - A water resources threshold and its implications for food security.
20670629 - Hydrogen sulfide exposure increases desiccation tolerance in drosophila melanogaster.
8220579 - Laboratory investigations on the larval zoophagy of ophyra capensis--an antagonist of m...
Publication Detail:
Type:  Journal Article     Date:  2012-10-16
Journal Detail:
Title:  Infection and drug resistance     Volume:  5     ISSN:  1178-6973     ISO Abbreviation:  Infect Drug Resist     Publication Date:  2012  
Date Detail:
Created Date:  2012-10-24     Completed Date:  2012-10-25     Revised Date:  2013-05-30    
Medline Journal Info:
Nlm Unique ID:  101550216     Medline TA:  Infect Drug Resist     Country:  New Zealand    
Other Details:
Languages:  eng     Pagination:  143-7     Citation Subset:  -    
Infectious Diseases Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Infect Drug Resist
Journal ID (iso-abbrev): Infect Drug Resist
ISSN: 1178-6973
Publisher: Dove Medical Press
Article Information
Download PDF
© 2012 Tham et al, publisher and licensee Dove Medical Press Ltd.
collection publication date: Year: 2012
Electronic publication date: Day: 16 Month: 10 Year: 2012
Volume: 5First Page: 143 Last Page: 147
PubMed Id: 23093909
ID: 3476749
DOI: 10.2147/IDR.S34941
Publisher Id: idr-5-143

Prevalence of extended-spectrum beta-lactamase-producing bacteria in food
Johan Tham1
Mats Walder2
Eva Melander23
Inga Odenholt1
1Infectious Diseases Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
2Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö, Sweden
3Department of Infection Control, Laboratory Medicine, Skåne County, Sweden
Correspondence: Correspondence: Johan Tham, Infectious Diseases Unit, Skånes, University Hospital, 205 02 Malmö, Sweden, Tel +46 040 337 762, Fax +46 040 337 363, Email


The term extended-spectrum β-lactamase (ESBL) was coined by Philippon in 1989.1,2 ESBLs are defined as β-lactamases that have the following characteristics: they are transferable; they can hydrolyze penicillins, first-, second-, and third-generation cephalosporins, and aztreonam (but not the cephamycins); and they can be blocked (in vitro) by β-lactamase inhibitors such as clavulanic acid. The incidence of infections due to resistant Enterobacteriaceae has rapidly increased over the last decade and has become a worldwide epidemic.35 Known risk-factors for colonization or onset of infection with ESBL-producing Enterobacteriaceae include: antibiotic use, prolonged and/or recent hospital stay, severe illness, recent surgery, bladder catheterization, use of invasive medical devices, being a resident of long-term care facility, travelling internationally, and being older than 65 years.610

The use of antibiotics in Sweden is low when compared with their use across other countries, especially countries in the southern part of Europe. Also, most of these other countries also use more broad-spectrum antibiotics such as cephalosporins and fluoroquinolones in contrast to Sweden where the use of narrow-spectrum penicillins are much more common.11,12 In parallel, these countries have a much higher frequency of antibiotic resistant bacteria, such as ESBL-producing Enterobacteriaceae. In Sweden, the historical prevalence of these bacteria in blood isolates has been low (around 1%). However, since 2004 an increased frequency of ESBL-producing Escherichia coli and Klebsiella pneumoniae has been noted,3 and the reason for this could be that the bacteria are being transmitted during travel, in overcrowded hospitals, or as a result of poor hand hygiene.1315

The epidemiology of ESBLs is quite complex, and the wider geographical area as well as the country in which the ESBLs are present, as well as the hospital, community, and host (in most cases, a single patient or a healthy carrier) where the bacteria can be transmitted are some of the many different factors to consider when assessing their occurrence. Some other factors include examining the specific type of bacteria (E. coli is more endemic, and K. pneumoniae is more epidemic). In addition, there are numerous reservoirs, including the environment (eg, soil and water), wild animals, farm animals, and pets where these bacteria are more likely to be found. Finally, the presence of these bacteria may occur due to transmission from food and water and via direct or indirect contact (person to person). Therefore it is important to evaluate if imported food may constitute as a reservoir and being a part of the rapid increase and the spreading of ESBLs.1619

The Cefotaximase–München (CTX-M) enzymes are natural β-lactamases that are produced by Kluyvera spp., and they are found in the chromosomes of those bacteria, but have also been transferred to a plasmid that carries these enzymes.20 The CTX-M enzymes can be classified into five major groups, which are designated as CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25. Each of these includes several plasmid-mediated enzymes. The specific uropathogenic E. coli clone ST131, which has been associated with the presence of ESBL CTX-M-15 and quinolone resistance, has probably contributed to the successful spread of ESBL-expressing bacteria around the world.21,22

There is evidence that microorganisms can be transferred from animals to humans, and ESBL-producing Enterobacteriaceae with CTX-M and other enzymes have been isolated from animals and different food products.19,23 Since Enterobacteriaceae such as E. coli are normal inhabitants of the intestinal flora in animals, food products can be contaminated directly in the abattoirs or in manure, which is used to promote growth in lettuce and vegetables.

In the northern hemisphere, a majority of fresh vegetables have to be imported during the winter season from countries with a high prevalence of ESBL-producing Enterobacteriaceae. To assess whether imported fresh salad (particularly from the Mediterranean region), vegetables, fruit, poultry, dry ham, and beef could constitute a possible reservoir of bacteria with ESBL, a study was conducted to see if these bacteria could be found in food. The possibility that imported food could harbor ESBL-producing Enterobacteriaceae, and the possibility that this food could offer a potential explanation as to why the rapid increase of ESBLs has occurred in Sweden (or other parts of the world) has not been investigated. In the current study, imported foods and Swedish chicken and beef products were investigated to see if ESBL-producing bacteria could be found in these food sources.

Materials and methods

A total of 419 swab samples from different retail foods were collected during the winter of 2007–2008. Of these food samples, 385 were from imported food and 34 were of domestic origin. The food samples were collected from six different local supermarkets in the Malmö area. A sterile medical gauze pad, one for each specimen, was used to swab all over each sample, and the samples were put in 8 mL of peptone water. If the transport was delayed, the samples were chilled overnight or, if possible, directly sent to the Clinical Microbiology Laboratory in Malmö, Sweden.24 Ninety-nine E. coli strains collected from Swedish meat and 94 E. coli isolates acquired from unspecified food received from a Swedish food testing laboratory were also investigated. These isolates were identified in accordance with methods described by the Nordic Committee on Food Analysis.25

The specimens and E. coli isolates that were collected from food were inoculated on 32 agar plates (a selective medium for Gram-negative rods) where the samples were analyzed qualitatively without pour plating. A standard identification procedure to differentiate between the specimens and to identify Enterobacteriaceae was used.26 The specimens were also inoculated on plates with a medium that was selective for cephalosporin resistance (ChromID™ ESBL; BioMerieux SA, Marcy l’Etoile, France). Any growth on these plates was further examined for ESBL production through synergy testing with discs containing ceftazidim and cefotaxim, as well as amoxicillin/clavulanic acid.27 If any ESBL-producing Enterobacteriaceae would be found the strain will be characterised to the species level by phenotypic tests carried out according to national guidelines. The 419 swab samples from food were also examined for Gramnegative environmental bacteria such as Pseudomonas spp, Stenotrophomonas spp, and Acinetobacter spp.

Statistical methods included analysis of the contingency table (Fisher’s exact test). Analysis was performed using GraphPad software (GraphPad Software, Inc, La Jolla, CA). The prevalence of Gram-negative bacteria was calculated as the percentage of each food specimen or the percentage identified from food samples from different countries.


Of the 385 swab samples collected from imported food, 60 (16%) showed no growth of Gram-negative rods. In 316 of the swab samples there was growth of Enterobacteriaceae. In most of the samples there was also growth of both Gramnegative environmental bacteria and Enterobacteriaceae, which were not further identified (311/385). None of the Enterobacteriaceae harbored any ESBLs. There were no significant differences in the amount of food containing Enterobacteriaceae when comparing countries from the Mediterranean region (Table 1). In 33 of the 34 swab samples taken from Swedish chicken, Enterobacteriaceae was found to be mixed with Gram-negative environmental bacteria. None of these Enterobacteriaceae harbored ESBLs. No ESBLs were found in the 99 E. coli isolates collected from the Swedish meat, or in the 94 E. coli isolates from the Swedish food testing laboratory.

Air dry-cured products such as ham, sausage, and beef contained significantly less Enterobacteriaceae isolates (3/42) than vegetables (142/157), fresh herbs (24/27), and salads (130/134) (P < 0.0001). The air dry-cured products also contained significantly less Gram-negative environmental bacteria (4/42) compared to salad (133/134), fresh herbs (27/27), and vegetables (141/147) (P < 0.0001) (Table 2).


In the present study, no ESBL-producing bacteria were found in the 385 swab samples or in the 193 E. coli strains received from the food testing laboratory. ESBL-producing bacteria were also not detected in the Swedish meat or in the Swedish chicken; however, significantly more Enterobacteriaceae were found in lettuces than in air dried, cured products.

This study has some limitations. First, no ESBL-producing Enterobacteriaceae were detected. However, a lot of Enterobacteriaceae isolates were found, and only a few of the swab samples showed no growth of Gram-negative rods; if there were any ESBLs, they would have been detected. Second, no quantitative method was used, and pre-enrichment of the samples was not done, which is a method that has often been used in other food studies. In the present study, selective isolation methods were used, and the objective was not to quantify the amount of bacteria, but to find Enterobacteriaceae. Third, the study was performed in 2007 and 2008; thereafter, the prevalence of ESBL-producing bacteria has increased in Sweden, so the spreading of these bacteria may have started later.

Little is known about whether transfer of ESBL-producing bacteria occurs between food and humans, but it is well known that the endogenous fecal flora of animal origin can spread across the food chain and transiently colonize the human gastrointestinal system. It is also known that resistant Enterobacteriaceae (for example, salmonellosis) in food can be transmitted in the community.17,28 The earliest finding of ESBL-producing bacteria in an animal was first reported from Japan in 1988, but it is only during the last few years that ESBL-producing bacteria have been of interest in human medicine and have been isolated from animals.18,29 Most of these studies have found ESBL-producing bacteria in meat products. For example in a study from the Czech Republic, ESBL-producing E. coli isolates were found in 8 (20%) of 40 turkey farms.30 A study from Tunisia showed that 13 out of 79 (16%) food samples from different supermarkets and butcheries harbored ESBL-producing E. coli, and reported that the CTX-M-1 group was the most dominant (10/13).31 In one of the first and largest studies of ESBL-producing bacteria in food from Spain in 2003, three of the 866 samples collected from cooked food were ESBL-positive; these samples came from two salads and one chicken. Of 131 raw meat samples from the same study, 35 (27%) were ESBL-positive. Twenty-seven (57%) of 47 retail chicken samples were also positive. Seven (58%) of 12 rabbit samples and one (5%) of 20 studied lamb samples were also positive.32

In a recent study from the Netherlands, Leverstein-van Hall et al found that 94% of a representative sample of chicken meat was contaminated with ESBL-producing E. coli, of which 39% belonged to genotypes also found in human samples.18 Most of the studies have focused on meat products, but they are usually cooked before eaten, which is why any Enterobacteriaceae will die during these procedures. It should be noted that this is not the case with fresh salad, fruit, and vegetables. In this study, significantly more Enterobacteriaceae were detected in lettuce and vegetables than in meat. Popular foods imported from the Mediterranean area that are eaten raw – such as air-dried ham (prosciutto and jamón serrano), air dried salted beef (bresaola), and sausage (salami, mortadella, and chorizo) – may also be a source of ESBL-producing bacteria, but in this study, they contained significantly less Enterobacteriaceae compared to lettuce and vegetables.

Studies have shown that patients who traveled outside Europe (especially to countries in the Middle East and South East Asia) were at high risk of becoming colonized with ESBL-producing Enterobacteriaceae.8,9 This might be a more important cause of acquiring ESBL-producing bacteria than consuming imported food from the Mediterranean countries.

It is important to note that this study did not include food samples from the Middle East and South East Asia, and any future studies should concentrate on food samples (especially salad) obtained from these countries since the transfer of ESBL-producing bacteria from food to humans probably occurs during travel. In conclusion, the present study did not support the theory that imported food from the Mediterranean area or that Swedish food may constitute an important vehicle for the dissemination of Enterobacteriaceae with ESBL during 2007 and 2008, and if there is a spread of ESBL-producing bacteria in imported and domestic food, it has begun after 2008.



The authors report no conflict of interest in this work.


Swedish Strategic Programme against Antibiotic Resistance. Funds from Region Skåne, Sweden.


We wish to acknowledge the assistance of the following: Birgit Andersson, Laboratory Technician, Medical Microbiology, Department of Laboratory Medicine, Malmö, Lund University; Mats Lindblad, Microbiology Division, National Food Administration; Monica Hannerz, Laboratory Director, ALcontrol Laboratories, Malmö; Maria Rissler, Secretary at the Department of Infectious Diseases, Lund University; Emir Prlja, Sales Manager, The Swedish Cooperative Union, Burlöv, Sweden; Mikael Johansson, Ulla Andersson, Calle Stockenberg, Sales Managers at ICA Maxi, Sweden; Kent Nilsson, Managing Director, City Gross, Malmö, Sweden; and Michael Linander, Director, Lidl, Sweden.

1. Philippon A,Labia R,Jacoby G. Extended-spectrum beta-lactamasesAntimicrob Agents ChemotherYear: 1989338113111362679367
2. Sirot D,Sirot J,Labia R,et al. Transferable resistance to third- generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamaseJ Antimicrob ChemotherYear: 19872033233343316146
3. European Centre for Disease Prevention and ControlEuropean Antimicrobial Resistance Surveillance Network (EARS-NET) homepage on the InternetStockholm, SwedenEuropean Centre for Disease Prevention and Control [cited September 16, 2011]. Available from: Accessed September 16, 2011
4. Rossolini GM,D’Andrea MM,Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamasesClin Microbiol InfectYear: 200814Suppl 1334118154526
5. Coque TM,Baquero F,Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in EuropeEuro SurveillYear: 20081347 pii. 1904419021958
6. Kuo KC,Shen YH,Hwang KP. Clinical implications and risk factors of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae infection in children: a case-control retrospective study in a medical center in southern TaiwanJ Microbiol Immunol InfectYear: 200740324825417639166
7. Ben-Ami R,Rodriguez-Bano J,Arslan H,et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patientsClin Infect DisYear: 200949568269019622043
8. Tham J,Odenholt I,Walder M,Brolund A,Ahl J,Melander E. Extended-spectrum beta-lactamase-producing Escherichia coli in patients with travellers’ diarrhoeaScand J Infect DisYear: 201042427528020121649
9. Tangden T,Cars O,Melhus A,Lowdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteersAntimicrob Agents ChemotherYear: 20105493564356820547788
10. Pena C,Gudiol C,Tubau F,et al. Risk-factors for acquisition of extended-spectrum beta-lactamase-producing Escherichia coli among hospitalised patientsClin Microbiol InfectYear: 200612327928416451416
11. Cars O,Molstad S,Melander A. Variation in antibiotic use in the European UnionLancetYear: 200135792711851185311410197
12. ESACHow high is the antibiotic consumption in Europe? [homepage on the Internet]Wilrijk, BelgiumESAC [cited October 06, 2010]. Available from: Accessed October 06, 2010
13. Pittet D. Compliance with hand disinfection and its impact on hospital-acquired infectionsJ Hosp InfectYear: 200148Suppl AS40S4611759025
14. Kampf G,Kramer A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubsClin Microbiol RevYear: 200417486389315489352
15. Lytsy B,Sandegren L,Tano E,Torell E,Andersson DI,Melhus A. The first major extended-spectrum beta-lactamase outbreak in Scandinavia was caused by clonal spread of a multiresistant Klebsiella pneumoniae producing CTX-M-15APMISYear: 2008116430230818397465
16. Oteo J,Navarro C,Cercenado E,et al. Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutionsJ Clin MicrobiolYear: 20064472359236616825350
17. Carattoli A. Animal reservoirs for extended spectrum beta-lactamase producersClin Microbiol InfectYear: 200814Suppl 111712318154535
18. Leverstein-van Hall MA,Dierikx CM,Cohen Stuart J,et al. for National ESBL surveillance groupDutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strainsClin Microbiol InfectYear: 201117687388021463397
19. Mesa RJ,Blanc V,Blanch AR,et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage)J Antimicrob ChemotherYear: 200658121121516720567
20. Decousser JW,Poirel L,Nordmann P. Characterization of a chromosomally encoded extended-spectrum class A beta-lactamase from Kluyvera cryocrescensAntimicrob Agents ChemotherYear: 200145123595359811709346
21. Coque TM,Novais A,Carattoli A,et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15Emerg Infect DisYear: 200814219520018258110
22. Nicolas-Chanoine MH,Blanco J,Leflon-Guibout V,et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15J Antimicrob ChemotherYear: 200861227328118077311
23. Johnson JR,Kuskowski MA,Menard M,Gajewski A,Xercavins M,Garau J. Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance statusJ Infect DisYear: 20061941717816741884
24. Lindblad M. Microbiological sampling of swine carcasses: a comparison of data obtained by swabbing with medical gauze and data collected routinely by excision at Swedish abattoirsInt J Food MicrobiolYear: 2007118218018517706823
25. Nordic Committee on Food AnalysisEnterobacteriaceaeDetermination in foods and feeds [homepage on the Internet]Oslo, NorwayNordic Committee on Food Analysis [cited July 11, 2012]. Available from: Accessed July 11, 2012
26. Melhus A. Juhlin’s medium: a selective medium and differential medium for gram-negative rodsMedical Microbiology LettersYear: 199657481
27. Nordic Committee on Antimicrobial Susceptibility TestingThe Swedish Reference Group for Antibiotics (SRGA) and its subcommittee on methodology (SRGA-M) SRGA’s methods [homepage on the Internet] [cited November 4, 2008]. Available from: Accessed November 4, 2008
28. Prats G,Mirelis B,Miro E,et al. Cephalosporin-resistant Escherichia coli among summer camp attendees with salmonellosisEmerg Infect DisYear: 20039101273128014609463
29. Matsumoto Y,Ikeda F,Kamimura T,Yokota Y,Mine Y. Novel plasmid- mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporinsAntimicrob Agents ChemotherMonth: 8 Year: 1988328124312463056257
30. Dolejska M,Matulova M,Kohoutova L,Literak I,Bardon J,Cizek A. Extended-spectrum beta-lactamase-producing Escherichia coli in turkey meat production farms in the Czech Republic: national survey reveals widespread isolates with bla(SHV-12) genes on IncFII plasmidsLett Appl MicrobiolYear: 201153327127710.1111/j.1472-765X.2011.03099.x21671965
31. Ben Slama K,Jouini A,Ben Sallem R,et al. Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicatedInt J Food MicrobiolYear: 20101372–328128620031243
32. Lavilla S,Gonzalez-Lopez JJ,Miro E,et al. Dissemination of extended-spectrum beta-lactamase-producing bacteria: the food-borne outbreak lessonJ Antimicrob ChemotherMonth: 6 Year: 20086161244125118339635

Article Categories:
  • Original Research

Keywords: ESBL, antibiotic resistance, zoonosis, food, Enterobacteriaceae.

Previous Document:  Bid-overexpression regulates proliferation and phosphorylation of Akt and MAPKs in response to etopo...
Next Document:  Polypodium leucotomos Extract use to prevent and reduce the risk of infectious diseases in high perf...