Document Detail


Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy.
MedLine Citation:
PMID:  22888751     Owner:  NLM     Status:  In-Process    
Abstract/OtherAbstract:
Polyhydroxyalkanoates (PHA) are natural, thermoplastic polyesters and due to their biocompatible and biodegradable properties they are good alternatives for the production of scaffolds for engineered tissues or nanoparticles for drug delivery. As a member of polyhydroxyalkanoate family, polyhydroxybutyrates (PHB) have been widely used as a biomaterial for in vitro and in vivo studies since their mechanical properties are very similar to conventional plastics. By using multi-emulsion technique, iron oxide particles were coated with polyhydroxybutyrate (PHB) polymer synthesized from Alcaligenes eutrophus bacteria and the magnetic carrier system was prepared accordingly. The bare nanoparticles and magnetic nanoparticles were morphologically, structurally and magnetically characterized by using Scanning electron microscope (SEM) and Atomic force microscope (AFM); Fourier Transform Infrared Spectrometry (FTIR), and Electron Spin Resonance (ESR) and Vibrating Sample Magnetometer (VSM) techniques, respectively. Particle size of PHB nanoparticles was determined by Zeta Sizer. It was found that the smallest particles were in the range of 239.43 +/- 5.25 nm in diameter. Concanavalin-A (Con-A) was used for targeting the cancer cells while etoposide was used as drug. Con-A and etoposide were loaded onto the particles. Release studies of etoposide were evaluated and the system was optimized for the further in vivo applications. Finally different formulation magnetic PHB nanoparticles cytotoxicity were evaluated in cell culture studies and used HeLa cell line (cervical cancer cells) as a cancer cells and L929 cells (mouse fibroblast cells) as a non-cancer cell line.
Authors:
Ebru Erdal; Doga Kavaz; Mesut Sam; Murat Demirbilek; Melike Erol Demirbilek; Necdet Saglam; Emir Baki Denkbaş
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Journal of biomedical nanotechnology     Volume:  8     ISSN:  1550-7033     ISO Abbreviation:  J Biomed Nanotechnol     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-08-14     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101230869     Medline TA:  J Biomed Nanotechnol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  800-8     Citation Subset:  IM    
Affiliation:
Hacettepe University, Nanotechnology and Nanomedicine Division, Beytepe, 06800 Ankara, Turkey.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Bacterial adhesion on honeycomb-structured poly(L-lactic acid) surface with ag nanoparticles.
Next Document:  Micelles based on methoxy poly(ethylene glycol)-cholesterol conjugate for controlled and targeted dr...