Document Detail

Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.
MedLine Citation:
PMID:  23354412     Owner:  NLM     Status:  Publisher    
Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.
Dequan Liu; Zhibo Yang; Peng Wang; Fei Li; Desheng Wang; Deyan He
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-28
Journal Detail:
Title:  Nanoscale     Volume:  -     ISSN:  2040-3372     ISO Abbreviation:  Nanoscale     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-28     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101525249     Medline TA:  Nanoscale     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Regulation of a truncated isoform of AMP-activated protein kinase ? (AMPK?) in response to hypoxia i...
Next Document:  Rictor encounters RhoGDI2: the second pilot is taking a lead.