Document Detail


Potassium's cardiovascular protective mechanisms.
MedLine Citation:
PMID:  7733391     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
High rates of potassium intake are associated with protection from cardiovascular diseases in populations consuming primitive diets and in vegetarians living in industrialized cultures. In studies in humans and in animals, a strong inverse association between potassium intake and hypertension and stroke has been described. However, acceptance of the putative protective effect has been limited by inadequate understanding of 1) long-term potassium regulation, and 2) mechanisms by which small changes in plasma potassium concentration may affect development of cardiovascular diseases. In this review, we present results from analyses of long-term potassium regulation that indicated 1) changes in potassium intake may result in potassium concentrations from 3.1 to 4.6 mmol/l, and 2) when the initial rate is below normal, potassium concentration is very sensitive to changes in potassium intake rate. In addition, we present results that provide bases for possible mechanisms by which potassium may protect against cardiovascular diseases: 1) increases in potassium inhibit free radical formation from vascular endothelial cells and macrophages; 2) elevation of potassium inhibits proliferation of vascular smooth muscle cells; 3) platelet aggregation and arterial thrombosis are inhibited by elevation of potassium; and 4) renal vascular resistance is reduced and glomerular filtration rate is increased by elevation of plasma potassium. We propose that elevation of dietary potassium intake increases plasma potassium concentration, thereby inhibiting free radical formation, smooth muscle proliferation, and thrombus formation. As a result, the rate of atherosclerotic lesion formation and thrombosis will be diminished. In addition, we propose the increase in glomerular filtration rate will cause a shift in the relationship between arterial pressure and sodium excretion that will lead to a reduction in arterial blood pressure. By these actions, high levels of dietary intake of potassium could provide the observed protection against the cardiovascular diseases that have plagued humankind since we began eating a modern high-sodium, low-potassium diet.
Authors:
D B Young; H Lin; R D McCabe
Publication Detail:
Type:  Journal Article; Research Support, U.S. Gov't, P.H.S.; Review    
Journal Detail:
Title:  The American journal of physiology     Volume:  268     ISSN:  0002-9513     ISO Abbreviation:  Am. J. Physiol.     Publication Date:  1995 Apr 
Date Detail:
Created Date:  1995-06-01     Completed Date:  1995-06-01     Revised Date:  2007-11-14    
Medline Journal Info:
Nlm Unique ID:  0370511     Medline TA:  Am J Physiol     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  R825-37     Citation Subset:  IM    
Affiliation:
Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216-4505, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Arteriosclerosis / etiology
Cardiovascular Diseases / prevention & control*
Cardiovascular System / drug effects*
Humans
Hypertension / etiology
Potassium / blood,  pharmacology*
Grant Support
ID/Acronym/Agency:
HL-11678/HL/NHLBI NIH HHS; HL-21435/HL/NHLBI NIH HHS; HL-51971/HL/NHLBI NIH HHS
Chemical
Reg. No./Substance:
7440-09-7/Potassium

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Effects of baroreceptor reflex on efferent pulmonary sympathetic nerve activity in anesthetized cat.
Next Document:  The physiology of heat regulation.