Population pharmacokinetics modeling of levetiracetam in Chinese children with epilepsy.  
Jump to Full Text  
MedLine Citation:

PMID: 22669118 Owner: NLM Status: MEDLINE 
Abstract/OtherAbstract:

AIM: To establish a population pharmacokinetics (PPK) model of levetiracetam in Chinese children with epilepsy. METHODS: A total of 418 samples from 361 epileptic children in Peking University First Hospital were analyzed. These patients were divided into two groups: the PPK model group (n=311) and the PPK validation group (n=50). Levetiracetam concentrations were determined by HPLC. The PPK model of levetiracetam was established using NONMEM, according to a onecompartment model with firstorder absorption and elimination. To validate the model, the mean prediction error (MPE), mean squared prediction error (MSPE), root meansquared prediction error (RMSPE), weight residues (WRES), and the 95% confidence intervals (95% CI) were calculated. RESULTS: A regression equation of the basic model of levetiracetam was obtained, with clearance (CL/F)=0.988 L/h, volume of distribution (V/F)=12.3 L, and K(a)=1.95 h(1). The final model was as follows: K(a)=1.56 h(1), V/F=12.1 (L), CL/F=1.04×(WEIG/25)(0.583) (L/h). For the basic model, the MPE, MSPE, RMSPE, WRES, and the 95%CI were 9.834 (0.587197.720), 50.919 (0.0121286.429), 1.680 (0.02134.184), and 0.0621 (1.1001.980). For the final model, the MPE, MSPE, RMSPE, WRES, and the 95% CI were 0.199 (0.3690.563), 0.002082 (0.000010.01054), 0.0293 (0.0010.110), and 0.153 (0.0301.950). CONCLUSION: A onecompartment model with firstorder absorption adequately described the levetiracetam concentrations. Body weight was identified as a significant covariate for levetiracetam clearance in this study. This model will be valuable to facilitate individualized dosage regimens. 
Authors:

Yinghui Wang; Li Wang; Wei Lu; Dewei Shang; Minji Wei; Ye Wu 
Related Documents
:

22289308  Costs and benefits in huntergatherer punishment. 22317318  Defining elements of sustainable work systems  a systemoriented approach. 22832068  Estimating workload using eeg spectral power and erps in the nback task. 22094328  Near infrared spectroscopy combined with least squares support vector machines and fuzz... 20099178  A performance improvement case study in aircraft maintenance and its implications for h... 2900728  Pharmacokinetic procedures for the estimation of organ clearances for the formation of ... 
Publication Detail:

Type: Journal Article; Research Support, NonU.S. Gov't 
Journal Detail:

Title: Acta pharmacologica Sinica Volume: 33 ISSN: 17457254 ISO Abbreviation: Acta Pharmacol. Sin. Publication Date: 2012 Jun 
Date Detail:

Created Date: 20120606 Completed Date: 20121015 Revised Date: 20141016 
Medline Journal Info:

Nlm Unique ID: 100956087 Medline TA: Acta Pharmacol Sin Country: United States 
Other Details:

Languages: eng Pagination: 84551 Citation Subset: IM 
Export Citation:

APA/MLA Format Download EndNote Download BibTex 
MeSH Terms  
Descriptor/Qualifier:

Adolescent Anticonvulsants / pharmacokinetics* Child Child, Preschool China Epilepsy / drug therapy* Humans Infant Models, Biological Models, Statistical Piracetam / analogs & derivatives*, pharmacokinetics 
Chemical  
Reg. No./Substance:

0/Anticonvulsants; 230447L0GL/etiracetam; ZH516LNZ10/Piracetam 
Comments/Corrections 
Full Text  
Journal Information Journal ID (nlmta): Acta Pharmacol Sin Journal ID (isoabbrev): Acta Pharmacol. Sin ISSN: 16714083 ISSN: 17457254 Publisher: Nature Publishing Group 
Article Information Download PDF Copyright © 2012 CPS and SIMM Received Day: 18 Month: 10 Year: 2011 Accepted Day: 28 Month: 04 Year: 2012 Print publication date: Month: 06 Year: 2012 Electronic publication date: Day: 06 Month: 06 Year: 2012 Volume: 33 Issue: 6 First Page: 845 Last Page: 851 PubMed Id: 22669118 ID: 4010372 Publisher Item Identifier: aps201257 DOI: 10.1038/aps.2012.57 
Population pharmacokinetics modeling of levetiracetam in Chinese children with epilepsy  
Yinghui Wang1  
Li Wang1*  
Wei Lu2  
Dewei Shang2  
Minji Wei1  
Ye Wu1  
1Pediatric Department of Peking University First Hospital, Beijing 100034, China 

2Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China 

*wangli5000@126.com.cn 
Levetiracetam (LEV; (S)ethyl2oxopyrrolidine acetamide (Keppra^{®}), UCB Pharma, Brainel'Alleud, Belgium) is a new antiepileptic drug. It is mainly used for the adjunctive treatment of partialonset seizures in adults and children, as well as myoclonic and primary generalized tonicclonic seizures in patients with idiopathic generalized epilepsy^{1,2,3}. The primary mechanism of action of LEV relates to its binding to synaptic vesicle proteins^{4}. The results of clinical trials in a Chinese population have demonstrated that LEV is effective and well tolerated in adults with inadequately controlled partialonset seizures^{5}.
LEV shows linear pharmacokinetics, and its major route of elimination is through the kidneys, with approximately 66% of a dose eliminated unchanged and 27% as inactive metabolites^{6,7,8,9}. Renal function determines the rate of elimination of LEV. The halflife is 6–8 h in healthy adults, and 5–7 h in children aged 6–12 years. However, the apparent clearance is 30%–40% higher in children than in adults^{10}. The initial daily dose is 20 mg^{−1}·kg^{−1}·d^{−1} (10 mg/kg twice daily) and can go up to 60 mg^{−1}·kg^{−1}·d^{−1}. Even higher doses (>60 mg^{−1}·kg^{−1}·d^{−1}) have also been reported^{11}.
Measuring the serum concentration (SC) of LEV can be useful in assessing compliance and managing patients in situations associated with pharmacokinetic (PK) alterations in pathological states such as renal impairment, as well as in specific age groups such as children and the elderly^{12,13}. Numerous chromatographic methods for the quantification of LEV in serum have been described. These include high performance liquid chromatography (HPLC) with ultraviolet (UV) detection and gas chromatography (GC) with various detection systems^{14,15,16}.
Levetiracetam has been used in the treatment of children with epilepsy in China since 2007; however, the PK parameters in Chinese children are not known. Therefore, the aims of the present study were to develop a population pharmacokinetics (PPK) model of levetiracetam in Chinese children with epilepsy.
Children with epilepsy aged 0.5–14 years were recruited by pediatricians at outpatient clinics in Peking University First Hospital. They were treated with LEV monotherapy or adjunctive therapy for 1 week at least on a stable LEV dose treatment. They presented with various types of epilepsy syndromes, including partial, generalized and undetermined. For each patient, the time between dosing and sampling, gender, age, weight, serum concentration, and coadministered medications were recorded. LEV tablets were administered in daily doses of 20–60 mg/kg. The LEV dose regimen could be adjusted in cases of inadequate seizure control or side effects.
The sampling times to last LEV intake were generally between 1 h and 13 h (Figure 1). Blood samples were kept at room temperature for 30 min before they were centrifuged, and the separated serum was preserved at 20 °C in our laboratory for less than a week before analysis.
This method has already been successfully established in China^{17}. Briefly, the HPLC system consists of a Waters 1525 (Waters company), including a manual sampler, a degasser, a quaternary pump, a thermostatted column compartment and a variable wavelength detector. The chromatographic separation of the analyte is done on an Alltima C18 (Grace Davison Discovery Sciences Company, Deerfield, IL, USA, 150 mm×4.6 mm, 5 mm particle size) analytical column protected with a prefilter. Data were collected and analyzed using a Breeze software package, version 3.03. LEV and an internal standard UCB17025 were provided by UCB Pharma (Brainl'Alleud, Belgium). By spiking drugfree human serum with a working solution, calibration samples between 160 and 1.25 mg/L were obtained. A linear regression was performed from chromatographic data that allowed us to extrapolate the LEV concentration in each patient sample. Quality control samples were prepared at three concentration levels, with target values of 2, 16, and 80 mg/mL. An internal standard (100 μL of a 40 μg/mL solution) and 1 mL dichloromethane were added to 100 μL serum sample. After vortexing for 1 min, ultrasonication for 10 min and centrifuging at 4000×g for 10 min, the upper layer was removed and evaporated to dryness under a nitrogen stream at room temperature. The residue was reconstituted in 100 μL methanol, of which 20 μL was injected into the chromatographic system. The flow rate was 1 mL/min and the column temperature was 37 °C. The wavelength detection was set at 210 nm. The retention time of LEV and UCB17025 was 5.45±0.10 and 7.50±0.20 min under the described conditions, respectively.
After parameterization according to previous studies^{11,18}, the LEV concentrations were suited to using a onecompartment model and a firstorder absorption process. The PPK modeling included the base model and final model.
The PK data were analyzed with the use of nonlinear mixed effects modeling (NONMEM, version 7, level 1.2). To describe the PK of LEV, the PK disposition model was tested using a standard onecompartment model with subroutine ADVAN2 TRANS2. The first order conditional estimation (FOCE) was used to develop the model. Firstly, the basic model with interindividual variability was set up. The model was parameterized for apparent clearance (CL/F), the apparent volumes of distribution of the central compartment (V/F), and the absorption rate constant (K_{a}). CL/F=θ_{CL/F}·exp(η_{CL/F}); V/F=θ_{V/F}·exp(η_{V/F}); K_{a}=θ_{Ka}·exp(η_{Ka}). Secondly, the covariate variability was added step by step and the full PPK model was set as follows:
where P_{i} is the individual predicted parameter value, θ_{i} is the typical population estimate of P_{i}, ηi is the proportional difference, COV and mCOV are the individual and median covariate values, and θ_{j} is the power factor for the effect of the covariate on P_{i}. The effects of categorical covariates on the structural parameters were modeled as follows:
where P_{j} is the individual predicted parameter value, θ_{1j} is the typical population value of P_{j} for category 1 of the covariate, and N_{1j} is an indicator variable that has a value of 1 when the covariate is present and 0 when the covariate is absent. The covariates of this study included: age (year), weight (WEIG), dose [the dosage of whole day (mg) before sampling] and coadministered medications (CO)].
When the important covariates were selected, a stepwise forward and backward approach was used and each covariate was added or deleted individually. Sex and CO were the categorical covariates. These categorical covariates were modeled by the use of indicator variables. The influences of continuous covariates, such as age, weight, dosage, were also explored. The likelihood ratio test was used to determine the appropriateness of a selected covariate. A decrease in the objective function values (OFV) (−2 loglikelihood) of 7.88 units was considered significant (χ^{2}P<0.005, df=1). Throughout the process of model development, graphic methods were also used to judge the general goodness of fit.
When an influence of the fixed effect was not considered, individual PK parameters were typical population values plus the random deviation. According to the experiential formulations, interindividual and intraindividual deviations (residual deviation) were presented as follows:
where P_{j} is the jth patient PK parameter; P_{TV} is the typical value of P for the population, η^{p} is interindividual deviation (a mean of 0 and variance ω_{P}), E_{ij}^{0} is the observation value, E_{ij} is the prediction value of E_{ij}^{0}, and ε_{ij} is the intraindividual deviation(its mean is 0 and variance is σ_{E}^{2}).
To validate the basic and the final model, concentrations from 50 patients in the valid group were predicted by the two models. These patients were enrolled at random. To assess the accuracy and precision of the concentration prediction, the mean prediction error (MPE), mean squared prediction error (MSPE), root meansquared prediction error (RMSPE), weight residues (WRES), and the 95% confidence intervals (95% CI) were calculated. Then, the values of the two models were compared^{19}. The shrinkage for each of the parameters in the model was evaluated using the method described by Karlsson^{20}.
A total of 418 samples obtained from 361 patients aged from 0.5–14 years were available for PK modeling. The characteristics of the studied population are summarized in Table 1. The intervals between the last dosage time and sampling time were distributed over 1–13 h (Figure 1). The distributions of the intervals between the last dosage time and sampling time in the model group are shown in the Figure 2. All of the patients had normal renal and hepatic function. In this population, 40% and 60% used one or two concomitant antiepileptic drugs (AEDs), respectively. The most frequently used concomitant AEDs were valproic acid (VPA), lamotrigine (LTG), carbamazepine (CBZ), oxcarbazepine (OXC), and topiramate (TPM).
A classical onecompartment model with firstorder absorption, and linear elimination (ADVAN2 and TRANS2) best described the data. The distributions of concentration data and sampling times in the PPK model and PPK valid groups are shown in Figure 1. In the basic model, K_{a}=1.95 (h^{−1}), V/F=12.3 (L), and CL/F=0.988 (L/h). In the full regressive model, the results of all the covariates were validated by a hypothesis test (Table 2). The parameters of the final model are shown in Table 3, and the final model was as follows: K_{a}=1.56 (h^{−1}), V/F=12.1 (L), CL/F=1.04×(WEIG/25)^{0.583} (L/h). No significant interaction with the concomitant AEDs was found. The estimated levetiracetam CL/F was 1.04 L/h and the corresponding halflife estimate in these subpopulations was 8.13 h.
Diagnostic plots are shown in Figure 3, including Dependent Variable (DV) versus Prediction (PRED), DV versus Individual Prediction (IPRED), weighted residual error (CWRES) versus PRED, and CWRES versus TIME.
MPE, MSPE, RMSPE, WRES and 95% CI in the basic model and final model are defined in Table 3. The indicators in the final model, such as MPE, MSPE, and RMSPE, decreased and showed more accurate predictions. The shrinkage for each of the parameters in the model is shown in Table 4.
In this study, a onecompartment model with firstorder absorption and elimination best characterized the data. The model describes the data adequately. The mean CL/F, V/F, and K_{a} were 1.04 L/h (0.69 mL·min^{−1}·kg^{−1}), 12.1 L and 1.56 h^{−1}, respectively. No drugdrug interaction was observed in this study. In this model, the median WEIG in our population was 25 kg. Weight was identified as the most important covariate that explained the interindividual variability of the apparent serum clearance of LEV.
There are very sparse PK samples for modeling. There were not enough points in the absorption phase (Figures 1 & 2); therefore, the ωK_{a} was fixed at 0. There was insufficient information about the absorption and distribution phases, which may have resulted in potential bias and imprecision regarding the parameter estimates. More attention should be paid to the distribution of the blood sampling time.
Zhao et al^{21} studied healthy Chinese male subjects following a singledose of either 500 mg and 1500 mg of levetiracetam, the median t_{max} was 0.5 h; t_{1/2} was 7.3±0.8 and 7.3±0.7 h. The pharmacokinetic data obtained in these Chinese subjects were similar to the historical data from a matched group of white subjects. There are no related studies of PPK of LEV in Chinese adults with epilepsy.
Pigeole et al^{22} found the following parameters in Japanese and Western adults: K_{a}(h^{−1})=2.44 (fed intake) or 4.80 (fasted intake), L/F(L/h)=4.02^{*}(WT/70)^{0.268}^{*}(CL_{CR}/110)^{0.122}^{*}S^{*}M, F(L)=52.7^{*}(WT/70)^{0.952}^{*}P^{*}VA, where WT is the bodyweight in kg; CL_{CR} is creatinine clearance in mL/min; S=1 for males and 0.896 for females; M=1.09 for enzymeinducing AEDs, 0.812 for valproic acid and 1 for other AEDs; P=1 for epileptic subjects and 0.861 for healthy subjects, and VA=0.776 for valproic acid and 1 for other AEDs. Glauser et al^{23} found that CL/F was 1.46±0.42 mL·min^{−1}·kg^{−1} in patients aged from 2.3 to 46.2 months. Toublanc et al^{17} found in children aged between 3 months and 18 years, CL/F (L/h)=2.18^{*}K^{*}(WEIG/30)^{0.753}, K=1 for children not receiving enzymeinducing AEDs and K=1.22 in the presence of enzymeinducing AEDs. K corresponds to the typical fold increase in LEV clearance by enzyme inducers. V/F (L/h)=21.4^{*}(WEIG/30)^{0.898}, K_{a}(h^{−1})=1.48^{*}(Age/10)^{0.277}. Chhun et al^{18} found that, from 4 to 16 years, CL/F (L/h)= 2.47^{*}(BW/33)^{0.89}, V/F (L)=21.9^{*}(BW/33)^{0.93}, and K_{a} (h^{−1})=3.83. The CL/F of this study was lower than in the children in the studies by Toublanc and Chhun^{17,18}. In Merhar's study of neonates^{24}, clearance was 1.21 mL·min^{−1}·kg^{−1}. In Pellock's study^{12} of 6–12 years old, CL/F was 1.43 mL·min^{−1}·kg^{−1}, which was higher than that in adults (0.96 mL·min^{−1}·kg^{−1}) and than the 0.69 mL·min^{−1}·kg^{−1} observed in the current study. It appears that the CL/F of Chinese children is lower than that of white Caucasian children. The trough serum concentration was also higher than in the white children (Table 5).
It appears that the CL/F in Chinese children was approximately 50% lower than in Western children based on the published data (eg, 0.69 mL·min^{−1}·kg^{−1}vs 1.21–1.46 mL·min^{−1}·kg^{−1}). LEV was mainly eliminated by the kidneys, and significant ethnic differences were not expected in previous studies; however, racial differences are likely to be at least partly responsible for the difference in CL/F that we observed, and these differences will be the subject of future studies. Our study has a good representation of Chinese children with epilepsy with ages that ranged from 0.5 to 14 years.
The final model contained covariates, such as age, weight, concomitant medication, and different formulations, and it was more accurate in predicting the patients' blood concentrations than the basic model that had no covariates. For the basic model, the MPE, MSPE, RMSPE, WRES, and their 95% CIs were 9.834 (−0.587–197.720), 50.919 (0.012–1286.429), 1.680 (0.021–34.184), and 0.0621 (−1.100–1.980), respectively. For the final model, the MPE, MSPE, RMSPE, WRES, and their 95% CIs were 0.199 (−0.369–0.563), 0.002082 (0.00001–0.01054), 0.0293 (0.001–0.110), and 0.153 (−0.030–1.950). Furthermore, the RMSPE (95% CI) of 0.0293 (0.001–0.110) in the final model outweighed the basic model's value of 1.680 (0.021–34.184). Therefore, the final model had a better accuracy and precision than the basic model. The shrinkage values of ωCL/F, ωV/F and ε were 20%, 44.9%, and 31%, respectively. The shrinkage of ωV/F (44.9%) was caused by insufficient information regarding the distribution phase (Figure 2). Based on this final PPK model, individual PK parameters will be estimated by the Bayesian approach in the near future, which will facilitate individualized dosage regimens.
The population analysis has been successful in describing the pharmacokinetics of LEV in children aged 0.5–14 years. A onecompartment model with firstorder absorption adequately described the LEV concentrations. The findings indicate that weight was the most influential factor for the CL/F of LEV in children with normal renal function. This will be invaluable for the development of individualized dosage regimens.
Li WANG designed research; Ye WU and Minji WEI performed research; Wei LU and Dewei SHANG contributed new analytical tools and reagents; Dewei SHANG and Yinghui WANG analyzed data; Yinghui WANG wrote the paper.
This work was supported by grants from the UCB Pharma (Brainel′Alleud, Belgium) and the Capital Development Fund of Medical Research of China (No 20092021). The authors thank the pediatricians at Peking University First Hospital (Beijing, China), for their contributions to the study.
References
Stefan H,Feuerstein TJ. Novel anticonvulsant drugsPharmacol TherYear: 20071131658317030393  
Shorvon SD,Lowenthal A,Janz D. Multicenter doubleblind, randomized, placebocontrolled trial of levetiracetam as addon therapy in patients with refractory partial seizures. European Levetiracetam Study GroupEpilepsiaYear: 20004111798610999557  
Hwang H,Kim KJ. New antiepileptic drugs in pediatric epilepsyBrain DecYear: 20083054955  
Stockist A,Lu S,Tonner F. Clinical pharmacology of levetiracetam for the treatment of epilepsyExpert Rev PharmacolYear: 2009233950  
Zhou B,Zhang Q,Tian L,Xiao J,Stefan H,Zhou D. Effects of levetiracetam as an addon therapy on cognitive function and quality of life in patients with refractory partial seizuresEpilepsy BehavYear: 2008123051018024209  
Patsalos PN. Clinical pharmacokinetics of levetiracetamClin PharmacokinetYear: 2004437072415301575  
Fay MA,Sheth RD,Gidal BE. Oral absorption kinetics of levetiracetam: the effect of mixing with food or enteral nutrition formulasClin TherYear: 200527594815978308  
Patsalos PN,Ghattaura S,Ratnaraj N,Sander JW. In situ metabolism of levetiracetam in blood of patients with epilepsyEpilepsiaYear: 20064718182117116020  
Allegaert K,Lewi L,Naulaers G,Lagae L. Levetiracetam pharmacokinetics in neonates at birthEpilepsiaYear: 2006471068916822254  
Glauser TA,Mitchell WG,Weinstock A,Bebin M,Chen D,Coupez R,et al. Pharmacokinetics of levetiracetam in infants and young children with epilepsyEpilepsiaYear: 20074811172217442002  
Toublanc N,SargentiniMaier ML,Lacroix B,Jacqmin P,Stockis A. Retrospective population pharmacokinetic analysis of levetiracetam in chidren and adolescents with epilepsyClin PharmacokinetYear: 2008473334118399714  
Pellock JM,Glauser TA,Bebin EM,Fountain NB,Ritter FJ,Coupez RM,et al. Pharmacokinetic study of levetiracetam in childrenEpilepsiaYear: 2001421574911879369  
Ensom MH,Chang TK,Patel P. Pharmacogenetics: the therapeutic drug monitoring of the futureClin PharmacokinetYear: 20014078380211735602  
Juenke J,Brown PI,Urry FM,McMillin GA. Drug monitoring and toxicology: a procedure for the monitoring of levetiracetam and zonisamide by HPLCUVJ Anal ToxicolYear: 200630273016620528  
Lancelin F,Franchon E,Kraoul L. Therapeutic drug monitoring of levetiracetam by highperformance liquid chromatography with photodiode array ultraviolet detection: preliminary observations on correlation between plasma concentration and clinical response in patients with refractory epilepsyTher Drug MonitYear: 2007295768317898647  
Contin M,Mohamed S,Albani F,Riva R,Baruzzi A. Simple and validated HPLCUV analysis of levetiracetam in deproteinized plasma of patients with epilepsyJ Chromatogr B Analyt Technol Biomed Life SciYear: 200887312932  
Wang Y,Wei MJ,Wang YX,Wang L. Therapeutic drug monitoring of levetiracetam by HPLCUVJ Pediatr PharmYear: 201016347  
Chhun S,Jullien V,Rey E,Dulac O,Chiron C,Pons G. Population pharmacokinetics of levetiracetam and dosing recommendation in children with epilepsyEpilepsiaYear: 2009501150719175400  
Jiang DC,Wang L,Wang YQ,Li L,Lu W,Bai XR. Population pharmacokinetics of valproate in Chinese children with epilepsyActa Pharmacol SinYear: 20072816778417883957  
Karlsson MO,Savic RM. Diagnosing model diagnosticsClin Pharmacol TherYear: 200782172017571070  
Zhao Q,Jiang J,Li X,Lu ZS,Hu P. Epilepsy Therapy: Study data from Peking Union Medical College, Medical college update knowledge of epilepsy therapyPain Central Nerv Sys WeekYear: 2007583  
Pigeolet E,Jacqmin P,SargentiniMaier ML,Stockis A. Population pharmacokinetics of levetiracetam in Japanese and Western adultClin PharmacokinetYear: 2007465031317518509  
Glauser TA,Mitchell WG,Weinstock A,Bebin M,Chen D,Coupez R,et al. Pharmacokinetics of levetiracetam in infants and young children with epilepsyEpilepsiaYear: 20074811172217442002  
Merhar SL,Schibler KR,Sherwin CM,MeinzenDerr J,Shi J,Balmakund T,et al. Pharmacokinetics of levetiracetam in neonates with seizuresJ PediatrYear: 2011159152421592494  
Fountain NB,Conry JA,RodríguezLeyva I,GutierrezMoctezuma J,Salas E,Coupez R,et al. Prospective assessment of levetiracetam pharmacokinetics during dose escalation in 4 to 12yearold children with partialonset seizures on concomitant carbamazepine or valproateEpilepsy ResYear: 20077460917270398 
Article Categories:
Keywords: levetiracetam, epilepsy, population pharmacokinetics, pediatric, Chinese children. 
Previous Document: Roles of vimentin and 1433 zeta/delta in the inhibitory effects of heparin on PC3M cell prolifera...
Next Document: Pharmacokinetic characteristics of vincristine sulfate liposomes in patients with advanced solid tum...