Document Detail


Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device.
MedLine Citation:
PMID:  25322400     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Liquid crystal over silicon (LCoS) spatial light modulator technology has become dominant in industries such as pico-projection, which require high-quality reflective microdisplays for intensity modulation of light. They are, however, restricted from being used in wider optical applications, such as computer-generated holography, adaptive optics, and optical correlation, due to their phase modulation ability. The main drawback of these devices is that their modulation is based on simple planar or twisted nematic liquid crystals, which are inherently slow mechanisms due to their viscoelastic properties. Their use is also limited due to fact that the phase modulation is dependent on the state of polarization of the illumination. In this paper, we demonstrate that a polymer-stabilized blue-phase liquid crystal can offer both phase modulation and high speed switching in a silicon backplane device which is independent of the input polarization state. The LCoS device shows continuous phase modulation of light with a submillisecond switching time and insensitivity to the input light polarization direction. This type of phase modulation opens up a whole new class of applications for LCoS technology.
Authors:
Rachel M Hyman; Alexander Lorenz; Stephen M Morris; Timothy D Wilkinson
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Applied optics     Volume:  53     ISSN:  1539-4522     ISO Abbreviation:  Appl Opt     Publication Date:  2014 Oct 
Date Detail:
Created Date:  2014-10-17     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0247660     Medline TA:  Appl Opt     Country:  United States    
Other Details:
Languages:  eng     Pagination:  6925-9     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Two-step resonant diffraction grating designed for three-color separation in Fresnel diffraction reg...
Next Document:  Superachromatic air-spaced triplet.