Document Detail

Platinum chemotherapy for BRCA1-related breast cancer: do we need more evidence?
Jump to Full Text
MedLine Citation:
PMID:  23146216     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
ABSTRACT: A recent prospective clinical trial provides further evidence that breast cancers arising in germline BRCA1 mutation carriers are highly sensitive to cisplatin chemotherapy. The potential significance of these data for the management of patients with BRCA1-related and BRCA2-related breast cancer is discussed.
Authors:
Nicholas C Turner; Andrew Nj Tutt
Related Documents :
1693796 - Quantification of prostatic cancer metastatic disease using prostate-specific antigen.
20354276 - Expression of matrix metalloproteinase-9 in prostate cancer. preliminary experience.
23642526 - Phase ii open-label study of bevacizumab combined with neoadjuvant anthracycline and ta...
2468276 - Is prostate-specific antigen the most useful marker for screening in prostate cancer?
18841336 - Japanese late-onset breast cancer families: their clinicopathological characteristics a...
21744256 - Multifocal, multicentric and contralateral breast cancers: breast mr imaging in the pre...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-13
Journal Detail:
Title:  Breast cancer research : BCR     Volume:  14     ISSN:  1465-542X     ISO Abbreviation:  Breast Cancer Res.     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100927353     Medline TA:  Breast Cancer Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  115     Citation Subset:  -    
Affiliation:
The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. nicholas.turner@icr.ac.uk.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Breast Cancer Res
Journal ID (iso-abbrev): Breast Cancer Res
ISSN: 1465-5411
ISSN: 1465-542X
Publisher: BioMed Central
Article Information
Download PDF
Copyright © 2012 BioMed Central Ltd
Print publication date: Year: 2012
Electronic publication date: Day: 13 Month: 11 Year: 2012
pmc-release publication date: Day: 13 Month: 5 Year: 2013
Volume: 14 Issue: 6
First Page: 115 Last Page: 115
PubMed Id: 23146216
ID: 4053124
Publisher Id: bcr3332
DOI: 10.1186/bcr3332

Platinum chemotherapy for BRCA1-related breast cancer: do we need more evidence?
Nicholas C Turner12 Email: nicholas.turner@icr.ac.uk
Andrew NJ Tutt3 Email: andrew.tutt@kcl.ac.uk
1The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
2Breast Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
3Breakthrough Breast Cancer Research Unit, Guy's Hospital Campus, Kings Health Partners, London SE1 9RT, UK

In a previous issue of Breast Cancer Research Tomasz Byrski and colleagues present the results of a prospective phase II study of cisplatin in BRCA1-related metastatic breast cancer - that is, breast cancer arising in women with a germline mutation in BRCA1 [1]. They report evidence of substantial efficacy with an overall response rate of 80%, including 45% with complete response, and a time to progression of 12 months. The majority of patients in the study had triple receptor-negative breast cancer, and this time to progression compares favorably with median progression-free survival for triple receptor-negative breast cancer in contemporary series [2]. This study follows on from a retrospective study by the same group that reported a pathological complete response rate of 83% with neoadjuvant cisplatin chemotherapy, compared with a rate of 15% with nonrandomized comparator neoadjuvant chemotherapy [3].

The molecular basis for these high response rates is well understood. Both BRCA1 and BRCA2 are required for DNA double-strand break repair by homologous recombination (HR-based DNA repair) [4,5]. Mutations in BRCA1 and BRCA2 inactivate protein function, and in cancer the wild-type allele is almost invariably lost, leading to a defect in HR-based DNA repair in the cancer. Platinum chemotherapy generates interstrand cross-links that can only be adequately repaired by HR-based DNA repair, and consequently BRCA1-deficient and BRCA2-deficient cells are highly sensitive to platinum chemotherapy both in vitro and in vivo. With high response rates in a prospective clinical trial, and a strong biological rationale, it is time to ask whether we are moving towards a new chemotherapy standard for BRCA1-related, and potentially by inference BRCA2-related, breast cancer or whether we need more evidence.

The main strength of the current study is that it has been carried out at all. BRCA1 mutations account for a small proportion of patients with advanced breast cancer, even in countries with founder mutations, and this presents a substantial barrier to running studies testing standard chemotherapy. Use of the chemotherapy regimen outside the trial, and the wide availability of novel therapy trials competing for the same patients, add to the challenges of recruiting such trials. Nevertheless, the study by Byrski and colleagues is an open-label single-arm study of only 20 patients, with no central radiological confirmation of response rates, and both this study design and this size make a meaningful interpretation of progression-free survival very difficult. The study was in addition not prospectively registered in a clinical trial registry, removing one of the safeguards against publication bias.

The study is dominated by women with three specific mutations in BRCA1 that represent the three founder mutations found in the Polish population [1], with over one-half being the single mutation 5382insC. One of these mutations, C61G, is predicted not to sensitize to cisplatin on the basis of preclinical data [6] yet cancers with this mutation appear to be just as sensitive to cisplatin in the study [1], a discrepancy for which it is important to understand the basis. Prior studies reported by this group have also been drawn from the Polish founder mutations, and we have limited data on the response of cancers with other BRCA1 mutations, and very limited data for BRCA2 mutations.

Although the data for BRCA1/2-related breast are therefore relatively limited, there are substantial data on the sensitivity of BRCA1-related and BRCA2-related ovarian cancers to platinum-based chemotherapy [7,8]. BRCA1/2-related serous ovarian cancers are highly sensitive to platinum chemotherapy, and remain sensitive to repeat challenges with platinum chemotherapy, which likely explains the improved survival of BRCA1/2-related serous ovarian cancer compared with BRCA1/2 wild-type serous ovarian cancer [8].

Should the accumulation of data, which includes this study by Byrski and colleagues, alter our approach to the treatment of BRCA1-related and BRCA2-related breast cancer? For patients with metastatic BRCA1-related breast cancer, although the data are limited, it seems clear that these patients should be offered the option of platinum-containing chemotherapy at some point during their treatment course. Whether platinum chemotherapy should be used as the first line in preference to other chemotherapy agents is unclear, and this is the subject of the BRCA trial (NCT00321633, NCT00532727) that randomizes first-line patients between carboplatin and docetaxel. For those with BRCA1 mutation-associated triple receptor-negative breast cancer and anthracycline-resistant and taxane-resistant disease, where there are few available active therapies, and the option of platinum-agent chemotherapy seems well founded.

Whether the platinum agent should be cisplatin or whether carboplatin would have a similar response rate is unknown. Any difference in efficacy between the two drugs is likely to be small and may be outweighed by logistical and toxicity advantages for the patient. Whether patients with evidence of disease response and a long platinum-free interval (>6 months off chemotherapy) should be retreated with platinum-based chemotherapy on progression or whether they should be treated with alternative chemotherapy regimens remains unclear, and we await data to guide such decisions. Although there are few direct data on BRCA2-related breast cancer, the strength of the biological rational, the comparative data between BRCA1 and BRCA2 in ovarian cancer, and the evidence of poly(ADP ribose) polymerase (PARP) inhibitor efficacy in BRCA2-related breast cancer [9] all suggest that similar advice should apply to BRCA2-related breast cancer.

What about the curative setting and patients receiving adjuvant or neoadjuvant chemotherapy? Here the data are less robust. Standard adjuvant anthracycline/taxane chemotherapy cures a substantial proportion of women with breast cancer, with evidence of better outcomes and therapy responses in the BRCA1/2 carrier population [10,11], so changes to this standard should only be made on the basis of strong evidence. At present the data to support platinum agents in this context are limited to retrospective analysis [3] or to prospective data for a very small number of patients [12]. Prospective studies are still required before routine practice changes in the curative setting. The one current exception to this is in the treatment of HER2-positive breast cancer in BRCA1/2 carriers. Relative equipoise has already been shown in the general breast cancer population for the TCH (docetaxel, carboplatin, trastuzumab) regimen compared with standard anthracycline-taxane-trastuzumab-based chemotherapy [13], and the TCH (docetaxel, carboplatin, trastuzumab) regimen presents an attractive option for BRCA1/2 carriers with HER2-positive breast cancer.

PARP inhibitors target the same HR-based DNA repair defect as cisplatin chemotherapy, and there is evidence of efficacy for the PARP inhibitor olaparib in BRCA1-related and BRCA2-related breast cancer with substantial prior chemotherapy exposure [9]. PARP inhibitors target the DNA repair defect in a more specific fashion and are well tolerated without typical chemotherapy side effects [9]. The challenge in BRCA1/2-related advanced breast cancer is to develop and support a collaborative mechanism where patients can be identified and entered into randomized trials that test novel therapies such as PARP inhibitors, or mechanistically based chemotherapy, to robustly assess the efficacy relative to standard care, and therefore allow these patients to benefit from these BRCA1/2-focused treatments.


Abbreviations

HR: homologous recombination; PARP: poly(ADP ribose) polymerase.


Competing interests

The authors declare that they have no competing interests.


References
Byrski T,Dent R,Blecharz P,Foszczynska-Kloda M,Gronwald J,Huzarski T,Cybulski C,Marczyk E,Chrzan R,Eisen A,Lubinski J,Narod SA,Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancerBreast Cancer ResYear: 201214R11010.1186/bcr323122817698
O'Shaughnessy J,Osborne C,Pippen JE,Yoffe M,Patt D,Rocha C,Koo IC,Sherman BM,Bradley C,Iniparib plus chemotherapy in metastatic triple-negative breast cancerN Engl J MedYear: 20111420521410.1056/NEJMoa101141821208101
Byrski T,Gronwald J,Huzarski T,Grzybowska E,Budryk M,Stawicka M,Mierzwa T,Szwiec M,Wisniowski R,Siolek M,Dent R,Lubinski J,Narod S,Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapyJ Clin OncolYear: 20101437537910.1200/JCO.2008.20.701920008645
Moynahan ME,Chiu JW,Koller BH,Jasin M,Brca1 controls homology-directed DNA repairMol CellYear: 19991451151810.1016/S1097-2765(00)80202-610549283
Tutt A,Bertwistle D,Valentine J,Gabriel A,Swift S,Ross G,Griffin C,Thacker J,Ashworth A,Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequencesEMBO JYear: 2001144704471610.1093/emboj/20.17.470411532935
Drost R,Bouwman P,Rottenberg S,Boon U,Schut E,Klarenbeek S,Klijn C,van der Heijden I,van der Gulden H,Wientjens E,Pieterse M,Catteau A,Green P,Solomon E,Morris JR,Jonkers J,BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistanceCancer CellYear: 20111479780910.1016/j.ccr.2011.11.01422172724
Alsop K,Fereday S,Meldrum C,Defazio A,Emmanuel C,George J,Dobrovic A,Birrer MJ,Webb PM,Stewart C,Friedlander M,Fox S,Bowtell D,Mitchell G,BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study GroupJ Clin OncolYear: 2012142654266310.1200/JCO.2011.39.854522711857
Tan DS,Rothermundt C,Thomas K,Bancroft E,Eeles R,Shanley S,Ardern-Jones A,Norman A,Kaye SB,Gore ME,'BRCAness' syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutationsJ Clin OncolYear: 2008145530553610.1200/JCO.2008.16.170318955455
Tutt A,Robson M,Garber JE,Domchek SM,Audeh MW,Weitzel JN,Friedlander M,Arun B,Loman N,Schmutzler RK,Wardley A,Mitchell G,Earl H,Wickens M,Carmichael J,Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trialLancetYear: 20101423524410.1016/S0140-6736(10)60892-620609467
Arun B,Bayraktar S,Liu DD,Gutierrez Barrera AM,Atchley D,Pusztai L,Litton JK,Valero V,Meric-Bernstam F,Hortobagyi GN,Albarracin C,Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experienceJ Clin OncolYear: 2011143739374610.1200/JCO.2011.35.268221900106
Gonzalez-Angulo AM,Timms KM,Liu S,Chen H,Litton JK,Potter J,Lanchbury JS,Stemke-Hale K,Hennessy BT,Arun BK,Hortobagyi GN,Do KA,Mills GB,Meric-Bernstam F,Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancerClin Cancer ResYear: 2011141082108910.1158/1078-0432.CCR-10-256021233401
Silver DP,Richardson AL,Eklund AC,Wang ZC,Szallasi Z,Li Q,Juul N,Leong CO,Calogrias D,Buraimoh A,Fatima A,Gelman RS,Ryan PD,Tung NM,De Nicolo A,Ganesan S,Miron A,Colin C,Sgroi DC,Ellisen LW,Winer EP,Garber JE,Efficacy of neoadjuvant cisplatin in triple-negative breast cancerJ Clin OncolYear: 2010141145115310.1200/JCO.2009.22.472520100965
Slamon D,Eiermann W,Robert N,Pienkowski T,Martin M,Press M,Mackey J,Glaspy J,Chan A,Pawlicki M,Pinter T,Valero V,Liu MC,Sauter G,von Minckwitz G,Visco F,Bee V,Buyse M,Bendahmane B,Tabah-Fisch I,Lindsay MA,Riva A,Crown J,Adjuvant trastuzumab in HER2-positive breast cancerN Engl J MedYear: 2011141273128310.1056/NEJMoa091038321991949

Article Categories:
  • Editorial


Previous Document:  Use of miglustat in a child with late-infantile-onset Niemann-Pick disease type C and frequent seizu...
Next Document:  Foodborne cryptosporidiosis: is there really more in Nordic countries?