Document Detail

Plant response to lead in the presence or absence EDTA in two sunflower genotypes (cultivated H. annuus cv. 1114 and interspecific line H. annuus × H. argophyllus).
MedLine Citation:
PMID:  23135752     Owner:  NLM     Status:  Publisher    
The aim of the present work was to study the response of two sunflower genotypes (cultivated sunflower Helianthus annuus cv. 1114 and newly developed genotype H. annuus × Helianthus argophyllus) to Pb medium-term stress and the role of exogenously applied EDTA in alleviating Pb toxicity in hydroponics. Plant growth, morpho-anatomical characteristics of the leaf tissues, electrolyte leakage, total antioxidant activity, free radical scavenging capacity, total flavonoid content, and superoxide dismutase isoenzyme profile were studied by conventional methods. Differential responses of both genotypes to Pb supplied in the nutrient solution were recorded. Pb treatment induced a decrease in the relative growth rate, disturbance of plasma membrane integrity, and changes in the morpho-anatomical characteristics of the leaf tissues and in the antioxidant capacity, which were more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype demonstrated higher tolerance to Pb when compared with the cultivar. This was mainly due to increased photosynthetically active area, maintenance of plasma membrane integrity, permanently high total antioxidant activity, and free radical scavenging capacity as well as total flavonoid content. The addition of EDTA into the nutrient solution led to limitation of the negative impact of Pb ions on the above parameters in both genotypes. This could be related to the reduced content of Pb in the roots, stems, and leaves, suggesting that the presence of EDTA limited the uptake of Pb. The comparative analysis of the responses to Pb treatment showed that the deleterious effect of Pb was more pronounced in the cultivated sunflower H. annuus cv. 1114. The new genotype H. annuus × H. argophyllus was more productive and demonstrated higher tolerance to Pb medium-term stress, which could indicate that it may possess certain mechanisms to tolerate high Pb concentrations. This character could be inherited from the wild parent used in the interspecific hybridization. The ability of EDTA to prevent Pb absorption by the plants could underly the mechanism of limiting of the negative impact of Pb ions. Hence, EDTA cannot be used to enhance Pb absorption from nutrient solution by sunflower plants for phytoremediation purposes.
Snezhana Doncheva; Michael Moustakas; Kalina Ananieva; Martina Chavdarova; Emiliya Gesheva; Rumyana Vassilevska; Plamen Mateev
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-8
Journal Detail:
Title:  Environmental science and pollution research international     Volume:  -     ISSN:  1614-7499     ISO Abbreviation:  Environ Sci Pollut Res Int     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-8     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9441769     Medline TA:  Environ Sci Pollut Res Int     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113, Sofia, Bulgaria,
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Differential effects of estrogen receptor ligands on regulation of dihydrotestosterone-induced ...
Next Document:  Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulato...