Document Detail

Placental amino acids transport in intrauterine growth restriction.
Jump to Full Text
MedLine Citation:
PMID:  22997583     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
The placenta represents a key organ for fetal growth as it acts as an interface between mother and fetus, regulating the fetal-maternal exchange of nutrients, gases, and waste products. During pregnancy, amino acids represent one of the major nutrients for fetal life, and both maternal and fetal concentrations are significantly different in pregnancies with intrauterine growth restriction when compared to uncomplicated pregnancies. The transport of amino acids across the placenta is a complex process that includes the influx of neutral, anionic, and cationic amino acids across the microvilluos plasma membrane of the syncytiotrophoblast, the passage through the cytoplasm of the trophoblasts, and the transfer outside the trophoblasts across the basal membrane into the fetal circulation. In this paper, we review the transport mechanisms of amino acids across the placenta in normal pregnancies and in pregnancies complicated by intrauterine growth restriction.
Authors:
Laura Avagliano; Chiara Garò; Anna Maria Marconi
Related Documents :
10616163 - Decreased parotid saliva gustin/carbonic anhydrase vi secretion: an enzyme disorder man...
1859163 - Maternal hypothyroxinemia: psychoneurological deficits of progeny.
20610493 - Pregnancy-induced fluctuations in functional t-cell subsets in multiple sclerosis patie...
Publication Detail:
Type:  Journal Article; Review     Date:  2012-07-11
Journal Detail:
Title:  Journal of pregnancy     Volume:  2012     ISSN:  2090-2735     ISO Abbreviation:  J Pregnancy     Publication Date:  2012  
Date Detail:
Created Date:  2012-09-21     Completed Date:  2013-06-03     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101553823     Medline TA:  J Pregnancy     Country:  Egypt    
Other Details:
Languages:  eng     Pagination:  972562     Citation Subset:  IM    
Affiliation:
Department of Obstetrics and Gynecology, DMSD San Paolo Hospital Medical School, University of Milano, 20142 Milano, Italy.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Amino Acids / metabolism*
Biological Transport
Epigenesis, Genetic
Female
Fetal Growth Retardation / genetics,  metabolism*
Humans
Maternal-Fetal Exchange / physiology*
Placenta / metabolism*
Pregnancy
Chemical
Reg. No./Substance:
0/Amino Acids
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): J Pregnancy
Journal ID (iso-abbrev): J Pregnancy
Journal ID (publisher-id): JP
ISSN: 2090-2727
ISSN: 2090-2735
Publisher: Hindawi Publishing Corporation
Article Information
Download PDF
Copyright © 2012 Laura Avagliano et al.
open-access:
Received Day: 15 Month: 3 Year: 2012
Accepted Day: 19 Month: 4 Year: 2012
Print publication date: Year: 2012
Electronic publication date: Day: 11 Month: 7 Year: 2012
Volume: 2012E-location ID: 972562
ID: 3401547
PubMed Id: 22997583
DOI: 10.1155/2012/972562

Placental Amino Acids Transport in Intrauterine Growth Restriction
Laura AvaglianoI1
Chiara GaròI1
Anna Maria MarconiI1*
Department of Obstetrics and Gynecology, DMSD San Paolo Hospital Medical School, University of Milano, 20142 Milano, Italy
Correspondence: *Anna Maria Marconi: annamaria.marconi@unimi.it
[other] Academic Editor: Timothy Regnault

1. Introduction

The placenta represents a key organ for fetal growth as it acts as an interface between mother and fetus regulating the fetal-maternal exchange of nutrients, gases, water, ions, and waste products; moreover, it is capable of metabolic, immunologic, and endocrine functions.

In humans, the hemochorial placenta includes the syncytiotrophoblast (a continuous, uninterrupted, multinucleated surface that covers the villous tree), the cytotrophoblast (a second layer of mononucleated trophoblasts that become discontinuous as pregnancy progresses), the connective tissue of the villous tree, and the endothelium of the fetal capillaries. During pregnancy, the placenta grows in volume, weight, and in terms of development and maturation of the type of villi, to allow the optimal fetal-maternal exchange [1]. Terminal villi are the final ramifications of the villous tree, characterized by a very thin syncytiotrophoblastic layer facing the fetal capillaries with the least maternal-fetal distance. The syncytiotrophoblast, therefore, is the key structure in regulating transplacental exchange across its maternal and fetal facing: the microvillous plasma membrane (MVM) and the basal membrane, respectively (BM).

During pregnancy, amino acids represent one of the major nutrients for fetal life; they are important precursors for fetal development and growth, for the biosynthesis of proteins, nucleotides (purine and pyrimidine), neurotransmitters, and so forth. The transport of amino acids across the placenta is a complex process mediated by transporters located on the MVM and BM of the syncytiotrophoblast.

The purpose of this paper is to review the transport mechanisms of amino acids across the placenta in normal pregnancies and in pregnancies complicated by intrauterine growth restriction (IUGR).


2. Maternal and Fetal Concentrations

The fetal plasma concentration of most amino acids does not change during pregnancy and is significantly higher than maternal concentration [25], indicating an active transport across the placenta, from the maternal to the fetal circulation. In addition, in normal pregnancies, between maternal and fetal concentrations, there is a significant linear relationship for most amino acids leading to an increase in the umbilical venous concentration as maternal concentration increases [5, 6].


3. Placental Amino Acid Transport and Metabolism

The concentration of free amino acids in the placental tissue is higher than the concentration both in fetal and maternal plasma [2]; the placenta not only transports amino acids to the fetus, but its production and/or utilization of an amino acid plays an active role in determining its flux into the fetal circulation. In vivo animal studies have shown that the placenta is an extremely active organ metabolically with a very high rate of protein turnover and with some amino acids produced/utilized at very high rate. In addition, the presence of interorgan cycles of some nonessential amino acids between the placenta and fetal liver has been demonstrated: fetal glutamine and glycine are metabolized in the fetal liver and released to the placenta as glutamate and serine, respectively [711]. Studies performed in pregnant women with stable isotopes suggest that a similar interaction is present also in human pregnancies [12].

Many types of amino acid transport systems have been identified in the placenta [13] (Table 1). Each transporter is highly stereospecific, but different transporters have overlapping substrate specificity, with the possible compensation of one transporter activity by another [14].

Two major classes of amino acids transporters have been described: Na+-dependent transport systems (that mediate amino acids influx and lead to increased concentration of amino acids within the cell) and Na+-independent systems [1921] (Table 1, Figure 1).

As mentioned earlier, the syncytiotrophoblast is the key structure in regulating transplacental amino acids passage. The transport through the syncytiotrophoblast includes the influx of neutral, anionic, and cationic amino acids across the MVM, the passage through the cytoplasm of the trophoblasts, and the transfer outside the trophoblasts across the basal membrane into the fetal circulation. Placental amino acids transporters are present both at the microvillous and basal membrane levels. Whereas the transport across the MVM has been well studied, that across the BM is less understood: the transport into the MVM of the syncytiotrophoblast almost always requires energy to act against the concentration gradient (Na+-dependent transport systems); on the contrary, in the outflux of amino acid across the BM, Na+-independent systems have an important role [21]. The transport across the BM may be mediated by amino acid exchangers (that take one amino acid molecule from outside the cell and one from inside the cell and switch their position); moreover, recently, the presence and efficacy of some efflux transporters (TAT1, LAT3, LAT4) in the human BM have been reported in isolated perfused human placental cotyledons [22] suggesting that facilitate diffusion is possible across the syncytiotrophoblast basal membrane.

Furthermore, during pregnancy, an adaptive response to different fetal nutrient demands seems possible [23], based on the evidence of changes in placental transporters expression and activity during the course of gestation: it has been shown that the activity of system A increases [24]. In addition, it has been shown that, during pregnancy, the same amino acid may be transported through different systems, contingent to which membrane is being crossed: in term placentas, L-arginine transport across the microvillous membrane preparations seems to occur through both the y+ and y+L systems, while, in the basal membrane, transport may be restricted to the y+L system [25]. Altogether, these observations point to the complex interactions between the developing microvillous and basal membrane within the trophoblast and between the maternal and fetal circulations, to facilitate an increase in nutrient delivery to warrant the demand of the growing fetus [26]. In other words, the placenta acts as a “nutrient sensor” regulating its transporter function [18].


4. Intrauterine Growth Restriction

Intrauterine fetal growth is determined by a balance between fetal genetically determined growth potential and maternal-placental nutrients supply [27]. Some factors influence fetal nutrition: maternal nutrition and metabolism, utero-placental blood flow, placental size, and placental transfer capacity [28]. In pregnancies complicated by intrauterine growth restriction (IUGR), all these factors can be affected [29].

4.1. Maternal and Fetal Concentrations

The concentration of most amino acids is significantly decreased both in the umbilical artery and vein of IUGR pregnancies when compared to normally grown babies [5, 6, 30, 31]: in particular, small for gestational age fetuses have significantly lower concentrations of the essential branched chain amino acids valine, leucine, and isoleucine [5]. Furthermore, in IUGR, the maternal concentration of most essential amino acids is significantly higher than in pregnancies with appropriate for gestational age (AGA) fetuses, likely as a result of a maladaptation to pregnancy with a deficient hormone production: this observation, together with the presence of lower fetal amino acid concentrations in intrauterine growth restriction, leads to significantly lower fetal-maternal differences in these pregnancies [6, 30].

Moreover, in IUGR pregnancies, increasing the maternal concentration of amino acids leads to an increased umbilical uptake of some of the amino acids to the fetus but with no evidence of a change in the uptake of the essential amino acids valine, phenylalanine, lysine, histidine, and threonine suggesting the presence of competition for the same transporter across the placenta that might block transport [32].

Recently, we have also shown that the maternal concentration of most amino acids is significantly increased within 48 hours after the administration of antenatal corticosteroids, and this determines that the concentrations of phenylalanine, methionine, threonine, valine, leucine, serine, glycine, alanine, glutamine, and proline are also significantly increased both in the umbilical vein and artery when compared to controls. However, the umbilical venoarterial difference of total amino nitrogen was not significantly different from zero: overall, the results of this study suggest that, in IUGR pregnancies, corticosteroids not only increase maternal protein catabolism but increase fetal protein catabolism as well. In addition, despite an increase in protein catabolism, those amino acids with relatively large bidirectional flux across the placenta, such as leucine and phenylalanine, do not exhibit large increases in fetal concentration; on the contrary, other amino acids, with very little bidirectional flux, such as alanine and threonine, are trapped within the fetal circulation leading to the large increase in their concentrations [33]. Whether corticosteroids have a direct effect on the human placental amino acid transport systems, as it has been shown in the mouse placenta [34], needs to be determined.

4.2. Placental Amino Acid Transport and Metabolism

Studies we have performed in human pregnancies at the time of fetal blood sampling, during a constant infusion of L-[1-13C]-leucine, have also shown that the fetomaternal leucine enrichment ratio progressively decreases in IUGR based on clinical severity [35]: this suggests not only that the transplacental flux of leucine is impaired but also a possible increased protein catabolism in these pregnancies [35]. In addition, if injected as a bolus into the maternal circulation of IUGR pregnancies, the fetomaternal enrichment ratio of two essential amino acids, leucine and phenylalanine, is significantly lower than in AGA pregnancies, again suggesting an impaired placental flux, whereas no differences are present for the nonessential amino acids, glycine, and proline [36].

However, as recently reviewed [21], some external factors may regulate the activity of amino acid transporters such as oxygen level [37], reactive oxygen species [38], insulin [37], leptin [39], and angiotensin II [40]. Therefore, it remains to be established whether the impairment of the amino acid transport system is the cause or the consequence of IUGR: we have shown that placental MVM system A activity not only is lower in IUGR compared with normal pregnancies but is also related to the severity of IUGR [41].

In vivo studies of placental amino acid transport and metabolism in the ovine heat-stress model of IUGR have shown a reduced flux of maternal leucine into the placenta and fetus [42]: this reduction is due to the reduction in placental and fetal mass and is accompanied by a decreased uteroplacental utilization of leucine. In addition, since uteroplacental oxygen and glucose consumption rates per gram of tissue remain within normal limits, the decrease in leucine utilization is not due to the general decline in metabolic rate [42]. In the same model, decreased fetoplacental threonine flux into the fetus and decreased fetoplacental threonine oxidation rate have been demonstrated indicating a downregulation of placental amino acids transport [43].

In severe IUGR fetal lambs (placental and fetal weights reduced by 40–60%), it has been shown that umbilical oxygen, glucose, and essential amino acid uptakes are significantly reduced compared to control animals whereas there are no differences in moderate IUGR (placental and fetal weights reduced by 25%) [44]. Two possible explanations have been proposed for these difference: first, since the placental diffusional exchange capacity of the severe IUGR fetus is significantly reduced, compared to AGA and moderate IUGR, changes in placental permeability and surface area might act as an impediment to control value uptakes per unit fetal weight; second, an upregulation of specific placental transport systems might be present since the mRNA expression of system L light chain components, LAT-1 and LAT-2, in severe IUGR is not different from control placentas, whereas it is significantly elevated in moderate IUGR [44].

In vitro studies of the human transport of amino acids have been performed [26]: in vesicle obtained from IUGR placentas, a reduced uptake of leucine and lysine has been reported, indicating a reduction of number or activity of the neutral and cationic amino acids transporters [45]; a decreased transport of taurine in isolated MVM has also been observed [46], suggesting a reduced activity of β amino acid transporters. Furthermore, in MVM and BM vesicles from IUGR placentas, a decreased activity of system A (a sodium-dependent neutral amino acid transporter) has been shown [4749], and the decreased activity of system A in MVM has been also related to the severity of IUGR [41]. Table 2 summarizes the alteration of amino acid transporters in the human placenta in IUGR pregnancies.


5. Fetal Programming

Evidence suggests that intrauterine fetal life is the mirror of what happens to human health in adult life [50]: abnormal intrauterine fetal growth (in excess or defect) is associated with the development of metabolic syndrome in adult life [50].

Epigenetic dysregulation may be the link between intrauterine events and adult disease; data from animal models suggest that nutrition in pregnancy could result in epigenetic modification [51]: a low-protein diet during pregnancy activates the placental amino acid response pathway in rats and programs the growth capacity of offspring [52]; moreover, in mice, maternal undernutrition alters the placental phenotype by adapting the expression of glucose and amino acids transporters to support fetal growth [53].

The metabolism of the fetus is adaptive and programmed to respond as expected to postnatal life [54]. Furthermore, as mentioned earlier, the placenta is a nutrient sensor [18]: if it senses an environment with low nutrient levels (deficit of maternal supply, such as in maternal undernutrition, alteration in substrate and oxygen level in maternal blood, alteration of placental blood flow), it increases its transport activity to allow normal fetal growth, by increasing the passage of nutrients from the maternal to fetal circulation; on the other hand, if there is an insufficient nutrient supply at the maternal side, the placenta may decrease its transport capacity, adapting fetal growth to a lower level, in order to reduce fetal (and postnatal) demand [55]. In addition, the placenta may modulate its transport activity even when it perceives an environment with a high nutritional content, as in gestational diabetic pregnancies. In these cases, an upregulation of glucose and amino acids transporters has been observed [55].

If the intrauterine environment may influence the epigenetic regulation, it is theoretically conceivable that impaired placental transport function could affect epigenetic regulation. In other word, the placenta may adapt fetal metabolism, and, therefore, the transport function of the placenta could be considered a “programming agent.”


References
1. Jones CJP,Fox H. Ultrastructure of the normal human placentaElectron Microscopy ReviewsYear: 1991411291782-s2.0-00260884431873486
2. Philipps AF,Holzman IR,Teng C,Battaglia FC. Tissue concentrations of free amino acids in term human placentasAmerican Journal of Obstetrics and GynecologyYear: 197813188818872-s2.0-0017857671686088
3. Montgomery D,Young M. The uptake of naturally occurring amino acids by the plasma membrane of the human placentaPlacentaYear: 19823113192-s2.0-00200434277043441
4. Soltesz G,Harris D,Mackenzie IZ,Aynsley-Green A. The metabolic and endocrine milieu of the human fetus and mother at 18–21 weeks of gestation—I. Plasma amino acid concentrationsPediatric ResearchYear: 198519191932-s2.0-00219676903969321
5. Cetin I,Marconi AM,Bozzetti P,et al. Umbilical amino acid concentrations in appropriate and small for gestational age infants: a biochemical difference present in uteroAmerican Journal of Obstetrics and GynecologyYear: 198815811201262-s2.0-00238541133337158
6. Cetin I,Ronzoni S,Marconi AM,et al. Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnanciesAmerican Journal of Obstetrics and GynecologyYear: 19961745157515832-s2.0-00299915759065132
7. Marconi AM,Battaglia FC,Meschia G,Sparks JW. A comparison of amino acid arteriovenous differences across the liver and placenta of the fetal lambAmerican Journal of Physiology: Endocrinology and MetabolismYear: 19892576E909E9152-s2.0-0024826287
8. Cetin I,Fennessey PV,Quick AN,et al. Glycine turnover and oxidation and hepatic serine synthesis from glycine in fetal lambsAmerican Journal of Physiology: Endocrinology and MetabolismYear: 19912603E371E3782-s2.0-0025726449
9. Vaughn PR,Lobo C,Battaglia FC,Fennessey PV,Wilkening RB,Meschia G. Glutamine-glutamate exchange between placenta and fetal liverAmerican Journal of Physiology: Endocrinology and MetabolismYear: 19952684E705E7112-s2.0-0028912208
10. Battaglia FC. Glutamine and glutamate exchange between the fetal liver and the placentaJournal of NutritionYear: 20001304974S977S2-s2.0-003402061910736364
11. Paolini CL,Meschia G,Fennessey PV,et al. An in vivo study of ovine placental transport of essential amino acidsAmerican Journal of Physiology: Endocrinology and MetabolismYear: 20012801E31E392-s2.0-003499791811120656
12. Cetin I,Marconi AM,Baggiani AM,et al. In vivo placental transport of glycine and leucine in human pregnanciesPediatric ResearchYear: 19953755715752-s2.0-00288989997603773
13. Battaglia FC,Regnault TRH. Placental transport and metabolism of amino acidsPlacentaYear: 2001222-31451612-s2.0-003496561111170819
14. Battaglia FC. Placental transport and utilization of amino acids and carbohydratesFederation ProceedingsYear: 19864510250825122-s2.0-00224766083527759
15. Cleal JK,Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetusJournal of NeuroendocrinologyYear: 20082044194262-s2.0-4114913507818266945
16. Grillo MA,Lanza A,Colombatto S. Transport of amino acids through the placenta and their roleAmino AcidsYear: 20083445175232-s2.0-4314909651618172742
17. Jansson T. Amino acid transporters in the human placentaPediatric ResearchYear: 20014921411472-s2.0-003514654211158505
18. Jansson T,Powell TL. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? A reviewPlacentaYear: 20062791972-s2.0-33645919011
19. Grillo MA,Lanza A,Colombatto S. Transport of amino acids through the placenta and their roleAmino AcidsYear: 20083445175232-s2.0-4314909651618172742
20. Jansson T. Amino acid transporters in the human placentaPediatric ResearchYear: 20014921411472-s2.0-003514654211158505
21. Desforges M,Sibley CP. Placental nutrient supply and fetal growthInternational Journal of Developmental BiologyYear: 2010542-33773902-s2.0-7795036289519876836
22. Cleal JK,Glazier JD,Ntani G,et al. Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblastJournal of PhysiologyYear: 201158949879972-s2.0-7995170978221224231
23. Sibley CP,Brownbill P,Dilworth M,Glazier JD. Adaptation in placental nutrient supply to meet fetal growth demand: implications for programmingPlacentaYear: 201031S70S742-s2.0-7704909272820060581
24. Mahendran D,Byrne S,Donnai P,et al. Na+ transport, H+ concentration gradient dissipation, and system A amino acid transporter activity in purified microvillous plasma membrane isolated from first-trimester human placenta: comparison with the term microvillous membraneAmerican Journal of Obstetrics and GynecologyYear: 19941716153415402-s2.0-00285691027802063
25. Ayuk PTY,Sibley CP,Donnai P,D’Souza S,Glazier JD. Development and polarization of cationic amino acid transporters and regulators in the human placentaAmerican Journal of PhysiologyYear: 20002786C1162C11712-s2.0-003391692110837344
26. Regnault TRH,Friedmann JE,Wilkening RB,Anthony RV,Hay WW. Fetoplacental transport and utilization of amino acids in IUGR—a reviewPlacentaYear: 200526S52S622-s2.0-1704438217615837069
27. Battaglia FC,Meschia G. An Introduction to Fetal PhysiologyYear: 1986Orlando, Fla, USAAcademic Press
28. Jansson T,Ylvén K,Wennergren M,Powell TL. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restrictionPlacentaYear: 20022353923992-s2.0-003658390412061855
29. Marconi AM,Paolini CL. Nutrient transport across the intrauterine growth-restricted placentaSeminars in PerinatologyYear: 20083231781812-s2.0-4304917331018482618
30. Economides DL,Nicolaides KH,Gahl WA,Bernardini I,Evans MI. Plasma amino acids in appropriate- and small-for-gestational-age fetusesAmerican Journal of Obstetrics and GynecologyYear: 19891615121912272-s2.0-00243319042589443
31. Cetin I,Corbetta C,Sereni L,et al. Umbilical amino acid concentrations in normal and growth-retarded fetuses sampled in utero by cordocentesisAmerican Journal of Obstetrics and GynecologyYear: 199016212532612-s2.0-00250552552301500
32. Ronzoni S,Marconi AM,Paolini CL,Teng C,Pardi G,Battaglia FC. The effect of a maternal infusion of amino acids on umbilical uptake in pregnancies complicated by intrauterine growth restrictionAmerican Journal of Obstetrics and GynecologyYear: 200218737417462-s2.0-003673737012237657
33. Marconi AM,Mariotti V,Teng C,et al. Effect of antenatal betamethasone on maternal and fetal amino acid concentrationAmerican Journal of Obstetrics and GynecologyYear: 20102022166.e1166.e62-s2.0-7474909806520022312
34. Vaughan OR,Coan PM,Fowden AL. Maternal dexamethasone treatment retards growth but increases transport capacity of the mouse placenta at day 16 of pregnancyReproductive SciencesYear: 200916, article 347A
35. Marconi AM,Paolini CL,Stramare L,et al. Steady state maternal-fetal leucine enrichments in normal and intrauterine growth-restricted pregnanciesPediatric ResearchYear: 19994611141192-s2.0-003297703410400144
36. Paolini CL,Marconi AM,Ronzoni S,et al. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnanciesJournal of Clinical Endocrinology and MetabolismYear: 20018611542754322-s2.0-003517655811701717
37. Nelson DM,Smith SD,Furesz TC,et al. Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblastsAmerican Journal of Physiology - Cell PhysiologyYear: 20032842C310C3152-s2.0-003730339412388062
38. Khullar S,Greenwood SL,McCord N,Glazier JD,Ayuk PTY. Nitric oxide and superoxide impair human placental amino acid uptake and increase Na+ permeability: implications for fetal growthFree Radical Biology and MedicineYear: 20043632712772-s2.0-164256293915036346
39. Jansson N,Greenwood SL,Johansson BR,Powell TL,Jansson T. Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragmentsJournal of Clinical Endocrinology and MetabolismYear: 2003883120512112-s2.0-003734278812629107
40. Shibata E,Powers RW,Rajakumar A,et al. Angiotensin II decreases system A amino acid transporter activity in human placental villous fragments through AT1 receptor activationAmerican Journal of Physiology: Endocrinology and MetabolismYear: 20062915E1009E10162-s2.0-3375118377016787961
41. Glazier JD,Cetin I,Perugino G,et al. Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restrictionPediatric ResearchYear: 19974245145192-s2.0-00308127579380446
42. Ross JC,Fennessey PV,Wilkening RB,Battaglia FC,Meschia G. Placental transport and fetal utilization of leucine in a model of fetal growth retardationAmerican Journal of Physiology: Endocrinology and MetabolismYear: 19962703E491E5032-s2.0-0029984416
43. Anderson AH,Fennessey PV,Meschia G,Wilkening RB,Battaglia FC. Placental transport of threonine and its utilization in the normal and growth-restricted fetusAmerican Journal of Physiology: Endocrinology and MetabolismYear: 19972725E892E9002-s2.0-0030973093
44. Regnault TRH,Marconi AM,Smith CH,et al. Placental amino acid transport systems and fetal growth restriction—a workshop reportPlacentaYear: 200526S76S802-s2.0-1704438732715837072
45. Jansson T,Scholtbach V,Powell TL. Placental transport of leucine and lysine is reduced in intrauterine growth restrictionPediatric ResearchYear: 19984445325372-s2.0-00316702729773842
46. Norberg S,Powell TL,Jansson T. Intrauterine growth restriction is associated with a reduced activity of placental taurine transportersPediatric ResearchYear: 19984422332382-s2.0-00318500599702920
47. Mahendran D,Donnai P,Glazier JD,D’Souza SW,Boyd RDH,Sibley CP. Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babiesPediatric ResearchYear: 19933456616652-s2.0-00274580628284106
48. Dicke JM,Verges DK. Neutral amino acid uptake by microvillous and basal plasma membrane vesicles from appropriate- and small-for-gestational age human pregnanciesJournal of Maternal-Fetal MedicineYear: 1994362462502-s2.0-0028594065
49. Jansson T,Ylvén K,Wennergren M,Powell TL. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restrictionPlacentaYear: 20022353923992-s2.0-003658390412061855
50. Barker DJP. In utero programming of chronic diseaseClinical ScienceYear: 19989521151282-s2.0-00316612159680492
51. Waterland RA,Michels KB. Epigenetic epidemiology of the developmental origins hypothesisAnnual Review of NutritionYear: 2007273633882-s2.0-35548941189
52. Strakovsky RS,Zhou D,Pan YX. A low-protein diet during gestation in rats activates the placental mammalian amino acid response pathway and programs the growth capacity of offspringJournal of NutritionYear: 201014012211621202-s2.0-7864960965920980649
53. Coan PM,Vaughan OR,Sekita Y,et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant miceJournal of PhysiologyYear: 201058835275382-s2.0-7564909567519948659
54. Solomons NW. Developmental origins of health and disease: concepts, caveats, and consequences for public health nutritionNutrition ReviewsYear: 2009671, supplementS12S162-s2.0-6884912102219453665
55. Jansson T,Ylvén K,Wennergren M,Powell TL. Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restrictionPlacentaYear: 20022353923992-s2.0-003658390412061855

Article Categories:
  • Review Article


Previous Document:  Association of social engagement with brain volumes assessed by structural MRI.
Next Document:  Smoking, cardiac symptoms, and an emergency care visit: a mixed methods exploration of cognitive and...