Document Detail


Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily.
MedLine Citation:
PMID:  22279972     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Phytochromes are red/far-red photosensory proteins that regulate adaptive responses to light via photoswitching of cysteine-linked linear tetrapyrrole (bilin) chromophores. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. CBCRs and phytochromes share a conserved Cys residue required for bilin attachment. In one CBCR subfamily, often associated with a blue/green photocycle, a second Cys lies within a conserved Asp-Xaa-Cys-Phe (DXCF) motif and is essential for the blue/green photocycle. Such DXCF CBCRs use isomerization of the phycocyanobilin (PCB) chromophore into the related phycoviolobilin (PVB) to shorten the conjugated system for sensing green light. We here use recombinant expression of individual CBCR domains in Escherichia coli to survey the DXCF subfamily from the cyanobacterium Nostoc punctiforme. We describe ten new photoreceptors with well-resolved photocycles and three additional photoproteins with overlapping dark-adapted and photoproduct states. We show that the ability of this subfamily to form PVB or retain PCB provides a powerful mechanism for tuning the photoproduct absorbance, with blue-absorbing dark states leading to a broad range of photoproducts absorbing teal, green, yellow, or orange light. Moreover, we use a novel green/teal CBCR that lacks the blue-absorbing dark state to demonstrate that PVB formation requires the DXCF Cys residue. Our results demonstrate that this subfamily exhibits much more spectral diversity than had been previously appreciated.
Authors:
Nathan Clarke Rockwell; Shelley S Martin; Alexander G Gulevich; J Clark Lagarias
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-1-26
Journal Detail:
Title:  Biochemistry     Volume:  -     ISSN:  1520-4995     ISO Abbreviation:  -     Publication Date:  2012 Jan 
Date Detail:
Created Date:  2012-1-27     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0370623     Medline TA:  Biochemistry     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Two-Dimensional Transition Metal Carbides.
Next Document:  Zeolite structure-direction by simple bis(methylimidazolium) cations. The effect of the spacer lengt...