Document Detail

Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity.
MedLine Citation:
PMID:  22285429     Owner:  NLM     Status:  Publisher    
Cell-encapsulating hydrogels used in regenerative medicine are designed to undergo a rapid liquid-to-solid phase transition in the presence of cells and tissues so as to maximize crosslinking and minimize cell toxicity. Light-activated free-radical crosslinking (photopolymerization) is of particular interest in this regard because it can provide rapid reaction rates that result in uniform hydrogel properties with excellent temporal and spatial control features. Among the many initiator systems available for photopolymerization, only a few have been identified as suitable for cell-based hydrogel formation owing to their water solubility, crosslinking properties and non-toxic reaction conditions. In this study, three long-wave ultraviolet (UV) light-activtied photoinitiators (PIs) were comparatively tested in terms of cytotoxicity, crosslinking efficiency and crosslinking kinetics of cell-encapsulating hydrogels. The hydrogels were photopolymerized from poly(ethylene glycol) (PEG) diacrylate or PEG-fibrinogen precursors using Irgacure® PIs I2959, I184 and I651, as well as with a chemical initiator/accelerator (APS/TEMED). The study specifically evaluated the PI type, PI concentration and UV light intensity, and how these affected the mechanical properties of the hydrogel (i.e. maximum storage modulus), the crosslinking reaction times and the reaction's cytotoxicity to encapsulated cells. Only two initiators (I2959 and I184) were identified as being suitable for achieving both high cell viability and efficient crosslinking of the cell-encapsulating hydrogels during the photopolymerization reaction. Optimization of PI concentration or irradiation intensity was particularly important for achieving maximum mechanical properties; a sub-optimal choice of PI concentration or irradiation intensity resulted in a substantial reduction in hydrogel modulus. Cytocompatibility may be compromised by unnecessarily prolonging exposure to cytotoxic free radicals or inadvertently enhancing the instantaneous dose of radicals in solution, both of which are dependent on the PI type/concentration and irradiation intensity. In the absence of a radical initiator, the short exposures to long-wave UV light irradiation (up to 5min, 20mWcm(-2), 365nm) did not prove to be cytotoxic to cells. Therefore, it is important to understand the relationship between PIs, light irradiation conditions and crosslinking when attempting to identify a suitable hydrogel formation process for cell encapsulating hydrogels.
Iris Mironi-Harpaz; Dennis Yingquan Wang; Subbu Venkatraman; Dror Seliktar
Related Documents :
19671539 - Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation.
10333769 - Cell cycle delay, mitochondrial stress and uptake of hydrophobic cations induced by sun...
12588799 - Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-depende...
10444559 - Chloride cell subtypes in the gill epithelium of japanese eel anguilla japonica.
12055609 - Alcohol and mitochondria: a dysfunctional relationship.
25469659 - Magnetic tweezers-based 3d microchannel electroporation for high-throughput gene transf...
22019639 - Both negative and positive g1 cell cycle regulators undergo proteasome-dependent degrad...
9686339 - Formation of a spherical multicellular aggregate (spheroid) of animal cells in the pore...
23842509 - Recent progress and new perspectives in lymphoma glycobiology.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-1-13
Journal Detail:
Title:  Acta biomaterialia     Volume:  -     ISSN:  1878-7568     ISO Abbreviation:  -     Publication Date:  2012 Jan 
Date Detail:
Created Date:  2012-1-30     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101233144     Medline TA:  Acta Biomater     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs.
Next Document:  The expression and effects the CABYR-c transcript of CABYR gene in hepatocellular carcinoma.