Document Detail


Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy.
MedLine Citation:
PMID:  16665420     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Comparative studies of chlorophyll a fluorescence, measured with a pulse amplitude modulated fluorometer, and of the pigment composition of leaves, suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light. This conclusion is based on the following findings: (a) exposure of leaves of Populus balsamifera, Hedera helix, and Monstera deliciosa to excess excitation energy (high light, air; weak light, 2% O(2), 0% CO(2)) led to massive formation of zeaxanthin and a decrease in violaxanthin. Over a wide range of conditions, there was a linear relationship between either variable, F(v), or maximum fluorescence, F(m), and the zeaxanthin content of leaves. (b) When exposed to photoinhibitory light levels in air, shade leaves of H. helix had a higher capacity for zeaxanthin formation, at the expense of beta-carotene, than shade leaves of M. deliciosa. Changes in fluorescence characteristics suggested that, in H. helix, the predominant response to high light was an increase in the rate of nonradiative energy dissipation, whereas, in M. deliciosa, photoinhibitory damage to photosystem II reaction centers was the prevailing effect. (c) Exposure of a sun leaf of P. balsamifera to increasing photon flux densities in 2% O(2) and 0% CO(2) resulted initially in increasing levels of zeaxanthin (matched by decreases in violaxanthin) and was accompanied by fluorescence changes indicative of increased nonradiative energy dissipation. Above the light level at which no further increase in zeaxanthin content was observed, fluorescence characteristics indicated photoinhibitory damage. (d) A linear relationship was obtained between the ratio of variable to maximum fluorescence, F(v)/F(m), determined with the modulated fluorescence technique at room temperature, and the photon yield of O(2) evolution, similar to previous findings (O Björkman, B Demmig 1987 Planta 170: 489-504) on chlorophyll fluorescence characteristics at 77 K and the photon yield of photosynthesis.
Authors:
B Demmig; K Winter; A Krüger; F C Czygan
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Plant physiology     Volume:  84     ISSN:  0032-0889     ISO Abbreviation:  Plant Physiol.     Publication Date:  1987 Jun 
Date Detail:
Created Date:  2010-06-29     Completed Date:  2010-07-06     Revised Date:  2010-09-14    
Medline Journal Info:
Nlm Unique ID:  0401224     Medline TA:  Plant Physiol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  218-24     Citation Subset:  -    
Affiliation:
Lehrstuhl für Botanik II, Universität Würzburg, Mittlerer Dallenbergweg 64, 8700 Würzburg, Federal Republic of Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Effects of Extracellular Extracts from Leaves on the Tuberization of Cuttings of Potato (Solanum tub...
Next Document:  Catalase Degradation in Sunflower Cotyledons during Peroxisome Transition from Glyoxysomal to Leaf P...