Document Detail

Pesticide residue dynamics in passion fruits: Comparing field trial and modelling results.
MedLine Citation:
PMID:  22673401     Owner:  NLM     Status:  Publisher    
We evaluated the exposure to pesticides from the consumption of passion fruits and subsequent human health risks by combining several methods: (i) experimental field studies including the determination of pesticide residues in/on passion fruits, (ii) dynamic plant uptake modelling, and (iii) human health risk assessment concepts. Eight commonly used pesticides were applied onto passion fruits cultivated in Colombia. Pesticide concentrations were measured periodically (between application and harvest) in whole fruits and fruit pulp. Measured concentrations were compared with predicted residues calculated with a dynamic and crop-specific pesticide uptake model, namely dynamiCROP. The model accounts for the time between pesticide application and harvest, the time between harvest and consumption, the amount of spray deposition on plant surfaces, uptake processes, dilution due to crop growth, degradation in plant components, and reduction due to food processing (peeling). Measured and modelled residues correspond well (r(2)=0.88-0.99), with all predictions falling within the 90% confidence interval of the measured values. A mean error of 43% over all studied pesticides was observed between model estimates and measurements. The fraction of pesticide applied during cultivation that is eventually ingested by humans is on average 10(-4)-10(-6), depending on the time period between application and ingestion and the processing step considered. Model calculations and intake fractions via fruit consumption based on experimental data corresponded well for all pesticides with a deviation of less than a factor of 2. Pesticide residues in fruits measured at recommended harvest dates were all below European Maximum Residue Limits (MRLs) and therefore do not indicate any violation of international regulatory thresholds.
Ronnie Juraske; Peter Fantke; Ana Cecilia Romero Ramírez; Alonso González
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-6-4
Journal Detail:
Title:  Chemosphere     Volume:  -     ISSN:  1879-1298     ISO Abbreviation:  -     Publication Date:  2012 Jun 
Date Detail:
Created Date:  2012-6-7     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0320657     Medline TA:  Chemosphere     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Elsevier Ltd. All rights reserved.
ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich, Switzerland.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Seasonal variations of CH(4) and N(2)O emissions in response to water management of paddy fields loc...
Next Document:  Putative link between Staphylococcus aureus bacteriophage serotype and community association.