Document Detail


Peroxisome Proliferator-Activated Receptor γ Ligands Retard Cultured Vascular Smooth Muscle Cells Calcification Induced by High Glucose.
MedLine Citation:
PMID:  23274912     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Peroxisome proliferator-activated receptor γ (PPARγ) and its ligands have profound effects on glucose homeostasis, cardiovascular diseases, and bone metabolism. To explore the pathophysiological roles of PPARγ in diabetes with concomitant vascular calcification, we investigated changes in PPARγ expression and the effect of the PPARγ ligands troglitazone and rosiglitazone on vascular smooth muscle cell (VSMC) calcification induced by high glucose (HG, 25 mmol/L). Compared with low glucose, HG-induced VSMC calcification, and PPARγ mRNA, protein level was decreased. Troglitazone and rosiglitazone treatment markedly attenuated the VSMC calcification, whereas PPARγ antagonist GW9662 abolished the effect of rosiglitazone on calcification. Pretreatment of VSMCs with rosiglitazone, but not troglitazone, restored the loss of lineage marker expression: the protein levels of α-actin and SM-22α were increased 52 % (P < 0.05) and 53.1 % (P < 0.01), respectively, as compared with HG alone. Troglitazone and rosiglitazone reversed the change in bone-related protein expression induced by HG: decreased the mRNA levels of osteocalcin, bone morphogenetic protein 2 (BMP2), and core binding factor α 1 (Cbfα-1) by 26.9 % (P > 0.05), 50.0 % (P < 0.01), and 24.4 % (P < 0.05), and 48.4 % (P < 0.05), 41.4 % (P < 0.01) and 56.2 % (P < 0.05), respectively, and increased that of matrix Gla protein (MGP) 84.2 % (P < 0.01) and 70.0 %, respectively (P < 0.05), as compared with HG alone. GW9662 abolished the effect of rosiglitazone on Cbfα-1 and MGP expression. PPARγ ligands can inhibit VSMCs calcification induced by high glucose.
Authors:
Ye-Bo Zhou; Jing Zhang; Ding-Qiong Peng; Jin-Rui Chang; Yan Cai; Yan-Rong Yu; Mo-Zhi Jia; Wei Wu; You-Fei Guan; Chao-Shu Tang; Yong-Fen Qi
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-30
Journal Detail:
Title:  Cell biochemistry and biophysics     Volume:  -     ISSN:  1559-0283     ISO Abbreviation:  Cell Biochem. Biophys.     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-12-31     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9701934     Medline TA:  Cell Biochem Biophys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
The Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Ministry of Education, Beijing, 100029, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Mutant N-RAS protects colorectal cancer cells from stress-induced apoptosis and contributes to cance...
Next Document:  Overexpression of TFAM Protects 3T3-L1 Adipocytes from NYGGF4 (PID1) Overexpression-Induced Insulin ...