Document Detail

Periprosthetic Vancouver type B1 and C fractures treated by locking-plate osteosynthesis: fracture union and reoperations in 60 consecutive fractures.
Jump to Full Text
MedLine Citation:
PMID:  23140109     Owner:  NLM     Status:  MEDLINE    
BACKGROUND AND PURPOSE: Historically, the treatment of periprosthetic femoral fractures (PFFs) has been associated with a high frequency of complications and reoperations. The preferred treatment is internal fixation, a revision of the femoral stem, or a combination of both. An improved understanding of plate use during internal fixation, and the introduction of locking-plate osteosynthesis may lead to improved outcome. We evaluated the outcome of Vancouver type B1 and C PFFs treated by locking-plate osteosynthesis, by assessing rates of fracture union and reoperations and by analyzing failure cases.
PATIENTS AND METHODS: From 2002 through 2011, 58 consecutive patients (60 fractures) with low-energy PFF around or below a stable femoral stem, i.e. Vancouver type B1 and C fractures, underwent osteosynthesis with a locking plate. All patients had a total hip replacement (THR). They were followed up clinically and radiographically, with 6 weeks between visits, until fracture union or until death. Fracture union was evaluated 6 months postoperatively.
RESULTS: At a median follow-up time of 23 (0-121) months after PFF, 8 patients (8 fractures) had been reoperated due either to infection (n = 4), failure of fixation (n = 3), or loosening of the femoral stem (n = 1). All the patients who had been followed up for at least 6 months-and who did not undergo reoperation or die-went on to fracture union (n = 43).
INTERPRETATION: Locking-plate osteosynthesis of periprosthetic Vancouver type B1 and C fractures gives good results regarding fracture union. It appears that spanning of the prosthesis to avoid stress-rising areas is important for successful treatment. Infection is the major cause of failure.
Lonnie Froberg; Anders Troelsen; Michael Brix
Related Documents :
24894309 - Association between systemic sclerosis and bone mineral density based on twelve observa...
24677169 - Predictors of excess mortality following fracture: a population-based cohort study.
23927679 - Prevalence of vertebral fractures, vascular calcifications, and mortality in warfarin t...
23851879 - Clinical outcomes of surgical management of anterior bilateral mandibular fractures.
6718949 - An electron microscopic study of the synovial-bone junction in rheumatoid arthritis.
24945479 - Progressive valgus angulation of the ankle secondary to loss of fibular congruity treat...
4436349 - The treatment of fracture-dislocation of the hip by total hip arthroplasty.
9401179 - Bone fractures in children with chronic cholestasis.
19484359 - Instability of the pelvic ring and injury severity can be predictors of death in patien...
Publication Detail:
Type:  Comparative Study; Journal Article     Date:  2012-11-11
Journal Detail:
Title:  Acta orthopaedica     Volume:  83     ISSN:  1745-3682     ISO Abbreviation:  Acta Orthop     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-11-26     Completed Date:  2013-01-24     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  101231512     Medline TA:  Acta Orthop     Country:  England    
Other Details:
Languages:  eng     Pagination:  648-52     Citation Subset:  IM    
Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Denmark.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Aged, 80 and over
Arthroplasty, Replacement, Hip / adverse effects*,  methods
Bone Plates*
Cohort Studies
Confidence Intervals
Femoral Fractures / etiology,  radiography,  surgery*
Follow-Up Studies
Fracture Fixation, Internal / instrumentation*,  methods
Fracture Healing / physiology
Hip Prosthesis
Middle Aged
Periprosthetic Fractures / radiography,  surgery*
Range of Motion, Articular / physiology*
Recovery of Function
Reoperation / methods
Retrospective Studies
Risk Assessment
Time Factors
Treatment Outcome

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Acta Orthop
Journal ID (iso-abbrev): Acta Orthop
Journal ID (publisher-id): ORT
ISSN: 1745-3674
ISSN: 1745-3682
Publisher: Informa Healthcare
Article Information
Download PDF
Copyright: © Nordic Orthopaedic Federation
Received Day: 25 Month: 4 Year: 2012
Accepted Day: 25 Month: 9 Year: 2012
Print publication date: Month: 12 Year: 2012
Electronic publication date: Day: 26 Month: 11 Year: 2012
Volume: 83 Issue: 6
First Page: 648 Last Page: 652
PubMed Id: 23140109
ID: 3555447
DOI: 10.3109/17453674.2012.747925
Publisher Id: ORT_A_747925_O

Periprosthetic Vancouver type B1 and C fractures treated by locking-plate osteosynthesis : Fracture union and reoperations in 60 consecutive fractures
Lonnie Froberg1
Anders Troelsen2
Michael Brix1
1Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense
2Department of Orthopaedic Surgery, Hvidovre University Hospital, Copenhagen, Denmark.
Correspondence: Correspondence:

Data from the Mayo Clinic Joint Replacement Database has shown a 1% prevalence of periprosthetic femoral fractures (PFFs) after primary total hip replacement (THR) (238 of 23,980) and a prevalence of 4% after revision THR (252 of 6,349) (Berry 1999). With increasing numbers of THRs, the incidence of PFF is on the rise (Lindahl et al. 2005). Treatment of PFF can be technically demanding, with a high frequency of complications and reoperations (Lindahl et al. 2006, Giannoudis et al. 2007, Zuurmond et al. 2010). Nonoperative treatment (McElfresh and Coventry 1974, Scott et. al 1975, Mont and Maar 1994) has been abandoned due to high mortality, and the preferred treatment today is internal fixation, a revision of the femoral stem, or a combination of both. The Vancouver classification has become the universally accepted one, and it is used to guide the surgeon in the choice of treatment (Duncan and Masri 1995, Masri et al. 2004) (Table 1).

Previous reports have recommend that the plate used for internal fixation must be of sufficient length to allow as much overlap of the femoral stem as possible (Ricci et al. 2006, Ehlinger et al. 2010). Spanning of most of the femur appears to be mechanically advantageous for patients with Vancouver type B1 and C fractures (Fulkerson et al. 2006). During the last decade, locking-plate osteosynthesis has been introduced in the treatment of PFF. Due to the higher strength of fixation offered with this technique, treatment outcomes could improve.

We evaluated the outcome of Vancouver type B1 and C PFF in THR patients who were treated by locking-plate osteosynthesis by assessing rates of fracture union and reoperations. Based on analysis of failures, our aim was to make recommendations for improvement of treatment algorithms.

Patients and methods

From May 2002 through October 2011, 68 consecutive patients with low-energy Vancouver type B1 and C PFF around or below a THR presented at our hospital (70 fractures). AP and lateral radiographs were classified according to the Vancouver classification. Vancouver type A involves fracture in the trochanteric region, type B in the diaphysis, including or just distal to the tip of the stem, and type C involves fracture in the diaphysis well distal to the tip of the stem (Duncan and Masri 1995, Brady et al. 1999). Type A and B were classified further as shown in Table 1.

The following parameters regarding the status of the hip at the time of PFF were assessed from the radiographs and patients files: femoral stem type (primary or revision), mode of fixation (cemented or cementless), Vancouver type, operative technique (conventional open or minimally invasive), implant used for osteosynthesis, and plate overlap as percentage of stem length (Table 2; see Supplemantary data).

Surgeons with special interest in trauma surgery performed the operations using either minimally invasive percutaneous osteosynthesis (MIPO) or open reduction and internal fixation (ORIF). The locking plates used were either locking compression plates (LCP, Synthes) or less invasive stabilization system (LISS, Synthes). MIPO was performed with the patient in the supine position on a radiolucent table. The plate was placed on the bone through a distal, lateral approach. First, fixation was achieved in the distal segment and indirect reduction techniques were used to reduce the fracture before fixation to the proximal segment.

ORIF was performed with the patient in the lateral decubitus position on a radiolucent table. A long skin incision and subvastus approach to the lateral femur was used. Care was taken to protect the periosteum and only retract it at the fracture edge, to allow reduction before sliding the plate into position. The plate was fixed to the bone with bicortical conventional screws before securing it further with locking screws. Locked unicortical screws were used against the prosthesis if bicortical screws could not be passed anterior or posterior to the stem. Cables (n = 3), locking attachment plates (n = 4) (LAP, Synthes), or both (n = 9) were used according to the surgeon’s preference. Femoral stem stability was assessed on preoperative radiographs; however, intraoperative testing was not performed. Drains were not used. Preoperative antibiotics (intravenous Cefuroxime, 1.5 g) and thromboprophylaxis were administered to all patients.

Postoperatively, the patients were mobilized either with full weight bearing or partial weight bearing: about 15 kg for the first 6 weeks on the operated extremity. With 6 weeks between visits, the patients were assessed clinically and radiographically in the outpatient clinic at least until fracture union, or until death when this preceded fracture union. Fracture union was evaluated on the radiographs taken 6 months postoperatively. In cases in which relative stability of the fracture complex was achieved, we considered fracture union when 3 out of 4 cortices had bridging callus in anteroposterior and lateral views. In cases in which absolute stability had been achieved, fracture union was considered when patients had no pain when walking and the radiographs showed no evidence of loosening of screws or fracture dislocation.

Confidence intervals (CIs) were calculated using the immediate command in the STATA software package (version 10.1).


Patients treated with osteosynthesis other than locking-plate osteosynthesis were excluded (n = 10). Thus, 60 fractures remained for study: 15 fractures in 14 males and 45 fractures in 44 females. Median age at operation was 78 (49–97) years. The median follow-up after PFF surgery was 23 (0–121) months (Table 2). At follow-up, 28 patients (30 fractures) were deceased. 9 had died less than 6 months after they experienced the PFF, and thus fracture union was not evaluated. 43 fractures went on to union. 8 fractures were reoperated 1–36 months after PFF surgery (rate = 0.13, CI: 0.06–0.25) (Table 3).

Reoperation due to infection occurred in 4 patients, all of whom had a type B1 fracture around a primary THR (2 cemented, 2 cementless). 3 of the patients had the PFF operated using ORIF and 1 patient was operated using MIPO technique. They had the THR removed and received antibiotic treatment for at least 6 weeks before a revision arthroplasty was inserted. Reoperation due to failure of fixation occurred in 3 patients following new low-energy falls. Common to these patients was that less than 50% of the stem had been spanned. 2 of them had loosening of the femoral stem and stem revision procedures were performed. The third patient had a stable femoral stem and was reoperated with ORIF, obtaining absolute stability using a locking plate with spanning of the femoral stem and the distal part of the diaphysis (Figure 1). In 1 patient, the stem was initially misinterpreted as being stable on the preoperative radiographic assessments. This patient had a loose stem, and a revision femoral stem was inserted after the fracture had healed.


The literature on the outcome of PFF treatment often describes a combination of PFF occurring intraoperatively and postoperatively (Jukkala-Pertio et al. 1998), various types and location of the PFF (Jukkala-Partio et al. 1998, Lindahl et al. 2006), fractures occurring in THR and hemiarthroplasties (Stuchin 1990), a combination of spontaneous, minor, or major trauma (Jukkala-Partio et al. 1998, Zuurmond et al. 2010), and different osteosynthesis techniques (Venu et al. 2001, Zuurmond et al. 2010). The present study has several methodological strengths. Firstly, only Vancouver types B1 and C fractures sustained during low-energy falls and treated by locking-plate osteosynthesis were included. Secondly, the Vancouver classification system we used is reproducible, reliable, and valid (Brady et al. 2000, Gohar et al. 2012). Thirdly, patients were operated by surgeons with special interest in trauma, as recommended (Lindahl et al. 2006, Young et al. 2008). Fourthly, the ratio of males to females was 1:3, and the median age at PFF surgery was 78 years, which is comparable to that reported in other studies on PFF in primary and revision THR. Thus, we have no reason to believe that there was bias regarding sex and age (van der Wal et al. 2005, Buttaro et al. 2007, Charkravarthy et al. 2007, Zuurmond et al. 2010). Lastly, Lindahl et al. (2006) described no difference in the outcome of PFF between cemented and cementless stems; thus, both types of fixation were included. The methodological limitations of the study were those inherent in retrospective data collection.

In the present study, the rate of reoperation due to deep infection was 4 of 60 fractures, all 4 of which were of type B1. In other studies, infection rates in type B1 and C fractures have varied from 2 (type B1 fractures) of 94 (Lindahl et al. 2006) to 1 (type B1 fracture) of 12 (Mukundan et al. 2010). The relatively large proportion of reoperations due to deep infections may have been caused by a disturbed blood supply due to prior surgery and tissue damage, as well as a long skin incision. 3 patients were reoperated due to failure of fixation. They had all sustained new low-energy falls, with a fracture occurring at the stress-rising area where the plate overlapped the prosthesis. Common to these patients was the fact that they initially had a type C fracture, where the plate overlapped less than half the length of the prosthesis (Figure 2). It appears likely that fractures could have been prevented if the plate had spanned the length of the femur and if bicortical fixation into the proximal femur had been achieved, as suggested in previous reports (Fulkerson et al. 2006, Ricci et al. 2006, Ehlinger et al. 2010).

In 1 case, we misinterpreted the radiographs in a type C fracture occurring in a revision THR and considered the stem to be stable. In 20% of radiographically stable stems, the stem is unstable when tested intraoperatively (Corten et al. 2009). Pike et al. (2009) have suggested that when the stability of the stem is in question, it should be tested intraoperatively. This can be performed using a posterolateral approach to make an arthrotomy and posterior dislocation of the stem, or if the distal aspect of the stem is exposed by generating a shear force along the longitudinal axis. However, as there was only 1 occurrence of radiographic misinterpretation of stem stability in our study, arthrotomy, dislocation of the THR, and testing of stem stability do not seem warranted.

8 of 60 fractures with 2-year follow-up were reoperated due to infection, failure of fixation, or failure to identify a loose femoral stem. In previous studies, reoperation rates for type B1 and C fractures in primary and revision THR have varied from 1 of 12 fractures with 14 months of follow-up (Chakravarthy et al. 2007) to 28 of 97 fractures with 5 years of follow-up (Lindahl et al. 2006). No cases of nonunion were seen in survivors with at least 6 months of follow-up. This is in line with the results of Chakravarthy et al. (2007), who reported union in 10 of 11 type B1 or type C PFFs in THR treated with a locking plate, but it contrasts with the results of Buttaro et al. (2007), who reported union in 8 of 14 type B1 or type C PFFs in primary and revision THR.

In conclusion, locking-plate osteosynthesis of periprosthetic Vancouver type B1 and C fractures gives good results in terms of fracture union. It appears that spanning of the prosthesis to avoid stress-rising areas is important for successful treatment. Infection remains the major cause of failure.

LF and MB: study design, collection and analysis of data, and preparation of the manuscript. AT: preparation of the manuscript.

No competing interests declared.

Supplementary data

Table 2 is available at our website (, identification number 5614.

Berry DJ. Epidemiology: Hip and kneeOrthop Clin North AmYear: 1999301839010196420
Brady OH,Garbuz DS,Masri BA,Duncan CP. Classification of the hipOrthop Clin North AmYear: 1999302354710196425
Brady OH,Garbuz DS,Masri BA,Duncan CP. The reliability and validity of the Vancouver classification of femoral fractures after hip replacementJ ArthroplastyYear: 2000151596210654463
Buttaro MA,Farfalli G,Parades Núñez P,Comba F,Piccaluga F. Locking compression plate fixation of Vancouver type B1 periprosthetic femoral fracturesJ Bone Joint Surg (Am)Year: 2007891964917768193
Chakravarthy J,Bansal R,Cooper J. Locking plate osteosynthesis for Vancouver type B1 and type C periprosthetic fractures of femur. A report on 12 patientsInjuryYear: 20073867253317477923
Corten K,Vanrykel F,Bellemans J,Frederix PR,Simon JP,Broos PL. An algorithm for the surgical treatment of periprosthetic fractures of the femur around a well-fixed femoral componentJ Bone Joint Surg (Br)Year: 2009911114243019880884
Duncan CP,Masri BA. Fractures of the femur after hip replacementInstr Course LectYear: 1995442933047797866
Ehlinger M,Adam P,Moser T,Delpin D,Bonnomet F. Type C periprosthetic fractures treated with locking plate fixation with a mean follow-up of 2.5 yearsOrthop Trauma Surg ResYear: 201096448
Fulkerson E,Koval K,Preston CF,Iesaka K,Kummer FJ,Egol KA. Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: a biomechanical comparison of locked plating and conventional cable platesJ Orthop TraumaYear: 2006202899316462560
Giannoudis PV,Kanakaris NK,Tsiridis E. Principles of internal fixation and selection of implants for periprosthetic femoral fracturesInjuryYear: 2007386698717467709
Gohar AN,Shakoor AB,Awan N. Interobserver and intraobserver reliability and validity of the Vancouver classification system of periprosthetic femoral fractures after hip arthroplastyJ ArthroplastyYear: 201227610475022425302
Jukkala-Partio K,Partio EK,Solovieva S,Paavilainen T,Hirvensalo E,Alho A. Treatment of periprosthetic fractures in association with total hip arthroplasty – a retrospective comparison between revision stem and plate fixationAnn Chir GynaecolYear: 199887229359825069
Lindahl H,Malchau H,Herberts P,Garellick G. Periprosthetic femoral fractures classification and demographics of 1049 periprosthetic femoral fractures from the Swedish National Hip Arthroplasty RegisterJ ArthoplastyYear: 20052085765
Lindahl H,Garellick G,Regner H,Herberts P,Malchau H. Three hundred and twenty-one periprosthetic femoral fracturesJour Bone Joint Surg (Am)Year: 200688612152216757753
Masri BA,Meek RM,Duncan CP. Periprosthetic fractures evaluation and treatmentClin OrthopYear: 2004420809515057082
McElfresh EC,Coventry MB. Femoral and pelvic fractures after total hip arthroplastyJ Bone Joint Surg (Am)Year: 197456483924822511
Mont MA,Maar DC. Fractures of the ipsilateral femur after hip arthroplasty. A statistical analysis of outcome based on 487 patientsJ ArthroplastyYear: 1994951197807109
Mukundan C,Rayan F,Kheir E,Macdoonald D. Management of late periprostethic femur fractures: a retrospective cohort of 72 patientsInt OrthopYear: 201034485919513712
Pike J,Davidson D,Garbuz D,Duncan CP,O’Brien PJ,Masri BA. Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplastyJ Am Acad Orthop SurgYear: 200917116778819880678
Ricci WM,Bolhofner BR,Loftus T,Cox C,Mitchell S,Borelli J. Jr. Indirect reduction and plate fixation, without grafting, for periprosthetic femoral shaft fractures about a stable intramedullary implant: Surgical techniqueJ Bone Joint Surg (Am) (Suppl 1)Year: 20068827582
Scott RD,Turner RH,Leitzes SM,Aufranc OE. Femoral fractures in conjunction with total hip replacementJ Bone Joint Surg (Am)Year: 1975574945011141259
Stuchin SA. Femoral shaft fracture in porous and press-fit total hip arthroplastyOrthop RevYear: 19901915392181387
Van der Wal B CH,Vischjager M,Grimm B,Heyligers IC,Tonino AJ. Periprosthetic fractures around cementless hydroxyapatite-coated femoral stemsInt OrthopYear: 2005292354015928913
Venu KM,Koka R,Garikpati R,Shenava Y,Madhu TS. Dall-Miles cable and plate fixation for the treatment of peri-prosthetic femoral fractures-analysis of results in 13 casesInjuryYear: 20013239540011382425
Young SW,Walker CG,Pitto RP. Functional outcome of femoral periprosthetic fracture and revision hip arthroplasty. A matched-pair study from the New Zealand RegistryActa OrthopYear: 2008794483818766480
Zuurmond RG,van Wijhe W,van Raay J J AM,Bulstra SK. High incidence of complications and poor clinical outcome in the operative treatment of periprosthetic femoral fractures: An analysis of 71 casesInjury. Int J Care InjuredYear: 20104162933


[Figure ID: F1]
Figure 1. 

Reoperation after a new fall and loss of fixation (the stem remained stable). Open reduction and internal fixation using a locking plate, additional cable, and locking attachment devices was performed to obtain absolute stability. The locking plate spanned both the femoral stem and the distal part of the femoral diaphysis.

[Figure ID: F2]
Figure 2. 

Three patients were reoperated due to failure of fixation. All 3 had experienced a new low-energy fall, with a fracture occurring at the stress-rising area where there was overlap between the plate and the prosthesis.

[TableWrap ID: T1] Table 1. 

The Vancouver classification system

Type Subtype Fracture description Treatment
Type A Fracture in trochanteric region
AG Fractures of the greater trochanter Conservative or cable wires
AL Fractures of the lesser trochanter Conservative or cable wires
Type B Fracture around stem or just below it
B1 Well-fixed stem ORIF
B2 Loose stem with good proximal bone stock Revision THR
B3 Loose stem with poor-quality bone stock Revision THR
Type C Fracture occurring well below the tip of the stem ORIF

ORIF: open reduction and internal fixation; THR: total hip replacement.

[TableWrap ID: T3] Table 3. 

Patients who were reoperated

3 C MIPO LISS 42 9 Loose stem Revision arthroplasty
15 B1 MIPO LCP 85 10 Infection THR removed, antibiotics, revision arthroplasty
19 C ORIF LISS, Cable 45 36 Failure of fixation Revision arthroplasty
20 C MIPO LISS 38 4 Failure of fixation Osteosynthesis
42 C MIPO LISS 24 17 Failure of fixation Revision arthroplasty
43 B1 ORIF LISS 100 17 Infection THR removed, antibiotics, revision arthroplasty
59 B1 ORIF LISS, Cable, LAP 89 2 Infection THR removed, antibiotics, revision arthroplasty
60 B1 ORIF LISS, Cable, LAP 100 1 Infection THR removed, antibiotics, revision arthroplasty

MIPO: minimally invasive percutaneous osteosynthesis; ORIF: open reduction and internal fixation; LISS: less invasive stabilization system; LCP: locking compression plate; LAP: locking attachment plate.

A Patient no.

B Vancouver type

C Tehnique

D Stem

E Plate overlap of stem length, %

F Time from fracture surgery to reoperation, months

G Cause of reoperation

H Treatment

Article Categories:
  • Fracture

Previous Document:  Screening for osteoporosis reduced new fracture incidence by almost half: a 6-year follow-up of 592 ...
Next Document:  Development of the Knee Injury and Osteoarthritis Outcome Score for children (KOOS-Child): comprehen...