Document Detail


Performance analysis of the protective effects of bicycle helmets during impact and crush tests in pediatric skull models.
MedLine Citation:
PMID:  23030382     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Object Bicycle accidents are a very important cause of clinically important traumatic brain injury (TBI) in children. One factor that has been shown to mitigate the severity of lesions associated with TBI in such scenarios is the proper use of a helmet. The object of this study was to test and evaluate the protection afforded by a children's bicycle helmet to human cadaver skulls with a child's anthropometry in both "impact" and "crushing" situations. Methods The authors tested human skulls with and without bicycle helmets in drop tests in a monorail-guided free-fall impact apparatus from heights of 6 to 48 in onto a flat steel anvil. Unhelmeted skulls were dropped at 6 in, with progressive height increases until failure (fracture). The maximum resultant acceleration rates experienced by helmeted and unhelmeted skulls on impact were recorded by an accelerometer attached to the skulls. In addition, compressive forces were applied to both helmeted and unhelmeted skulls in progressive amounts. The tolerance in each circumstance was recorded and compared between the two groups. Results Helmets conferred up to an 87% reduction in so-called mean maximum resultant acceleration over unhelmeted skulls. In compression testing, helmeted skulls were unable to be crushed in the compression fixture up to 470 pound-force (approximately 230 kgf), whereas both skull and helmet alone failed in testing. Conclusions Children's bicycle helmets provide measurable protection in terms of attenuating the acceleration experienced by a skull on the introduction of an impact force. Moreover, such helmets have the durability to mitigate the effects of a more rare but catastrophic direct compressive force. Therefore, the use of bicycle helmets is an important preventive tool to reduce the incidence of severe associated TBI in children as well as to minimize the morbidity of its neurological consequences.
Authors:
Tobias A Mattei; Brandon J Bond; Carlos R Goulart; Chris A Sloffer; Martin J Morris; Julian J Lin
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-2
Journal Detail:
Title:  Journal of neurosurgery. Pediatrics     Volume:  -     ISSN:  1933-0715     ISO Abbreviation:  J Neurosurg Pediatr     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101463759     Medline TA:  J Neurosurg Pediatr     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Neurosurgery, University of Illinois College of Medicine, Illinois Neurological Institute;
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Acid-labile mPEG-vinyl ether-1,2-dioleylglycerol lipids with tunable pH sensitivity: synthesis and s...
Next Document:  Mapping of depositional and non-depositional areas in Salinas, California streams with concurrent py...