Document Detail

Percutaneous vertebroplasty for Langerhans cell histiocytosis of the lumbar spine in an adult: Case report and review of the literature.
Jump to Full Text
MedLine Citation:
PMID:  23251253     Owner:  NLM     Status:  Publisher    
Langerhans cell histiocytosis (LCH) is extremely rare in the lumbar spine of adults. The radiological features typically manifest as vertebral tumors. The exact etiology of LCH remains unknown. Langerhans cells may cause local or systemic effects. The most frequent sites of these bony lesions are the skull, femur, mandible, pelvis and spine. To date, only 3 spinal LCH cases treated by percutaneous vertebroplasty (PVP) have been reported. The present study reports a case of LCH of the fourth lumbar vertebra (L4) in a 51-year-old male with a 10-day history of low back pain, limited waist motion and right lower limb numbness. The patient was treated using PVP. The use of PVP for treating LCH of the spine was successful. The present study provides an up-to-date literature overview of LCH.
Fei Feng; Hai Tang; Hao Chen; Pu Jia; Li Bao; Jin-Jun Li
Related Documents :
23213583 - Laryngeal involvement of multiple myeloma.
7522803 - The incidence of meningococcal illness in the east anglian regional health authority: 1...
6842663 - Polyorchidism diagnosed preoperatively by ultrasonography.
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-01
Journal Detail:
Title:  Experimental and therapeutic medicine     Volume:  5     ISSN:  1792-0981     ISO Abbreviation:  Exp Ther Med     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2012-12-19     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101531947     Medline TA:  Exp Ther Med     Country:  -    
Other Details:
Languages:  ENG     Pagination:  128-132     Citation Subset:  -    
Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Exp Ther Med
Journal ID (iso-abbrev): Exp Ther Med
Journal ID (publisher-id): ETM
ISSN: 1792-0981
ISSN: 1792-1015
Publisher: D.A. Spandidos
Article Information
Download PDF
Copyright © 2013, Spandidos Publications
Received Day: 25 Month: 7 Year: 2012
Accepted Day: 08 Month: 10 Year: 2012
Print publication date: Month: 1 Year: 2013
Electronic publication date: Day: 01 Month: 11 Year: 2012
pmc-release publication date: Day: 01 Month: 11 Year: 2012
Volume: 5 Issue: 1
First Page: 128 Last Page: 132
PubMed Id: 23251253
ID: 3524240
DOI: 10.3892/etm.2012.791
Publisher Id: etm-05-01-0128

Percutaneous vertebroplasty for Langerhans cell histiocytosis of the lumbar spine in an adult: Case report and review of the literature
Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
Correspondence: Correspondence to: Professor Hai Tang, Department of Ortho pedics, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Chaoyang, Beijing 100050, P.R. China, E-mail:


Langerhans cell histiocytosis (LCH) in the lumbar spine of adults is uncommon (1,2). A variety of treatment modalities have been reported for the management of LCH of the spine, including conservative treatments, systemic chemotherapy, curettage (with or without bone grafting), internal fixation and fusion, percutaneous vertebroplasty (PVP), corticosteroid injection into the lesion and radiotherapy (3). Although the clinical results are largely satisfactory, there is not a defined therapeutic algorithm. In the present study, the case of a 51-year-old male with LCH of the fourth lumar vertebra (L4) is reported.

Case report

The 51-year-old male patient exhibited a 10-day history of low back pain, limited waist motion and right lower limb numbness. The patient reported no pain at other sites, exhibited no fever or night sweats and was unable to recall any recent injury. The patient’s past medical history was unremarkable for trauma or other bone diseases. A physical examination demonstrated localized tenderness and percussion pain over the L4 spinous process, restricted waist motion and numbness of the right leg. Laboratory tests, including full blood cell count, serum electrolytes, renal and liver function tests, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), did not reveal any abnormalities. An X-ray revealed that the lesion was limited to the left lateral mass of the atlas, causing a potential instability (Fig. 1A and B). Computed tomography (CT) revealed an osteolytic lesion in the right lateral mass of the L4 and accessories, accompanied by a paravertebral and intraspinal soft tissue extension (Fig. 2A and B). Magnetic resonance imaging (MRI) revealed osteolytic destruction of the vertebral body associated with a mild compression fracture that exhibited hypointensity on T1-weighted (T1-W) images and hyperintensity on T2-weighted (T2-W) images (Fig. 3). On the basis of the radiological features of the lesion, there was a high possibility that the patient had a neoplastic lesion. However, the radiological features of the lesion were not sufficient to establish the diagnosis of LCH with certainty. A C-arm X-ray machine-guided needle biopsy of the vertebral body was performed and the histopathological diagnosis was LCH. Immunohistochemical staining was positive for CD1a and S-100 (Fig. 4). Further diagnostic evaluation included a bone scan, CT of the lungs, pituitary hormonal evaluation and brain CT and abdominal ultrasound evaluation. No other LCH infiltration was identified in the patient and the patient was treated as suffering from a single-system and single-site disease.

The patient underwent PVP (Stryker, Inc., Meyzieu, France) under local anesthesia in the prone position with the belly suspended in midair, under C-arm imaging guidance (Fig. 5). The amount of bone cement used to fill in the L4 was 3.6 ml. The blood loss during surgery was 5 ml. The spread of the cement was ideal with the exception of a small amount of paravertebral leakage of cement (Fig. 2C) which did not cause any symptoms. No complications were observed during the surgery or follow-up. After lying in bed for 6 h, the patient was able to sit freely and 24 h postoperatively, the patient was allowed to walk freely. Following the procedure, the low back pain was resolved completely and the patient’s neurological symptoms were rapidly alleviated and then gradually continued to be alleviated. The patient required the use of a weak opioid prior to the PVP but did not receive an analgesic afterwards. Notably, CT revealed a significant decrease in the paravertebral and intraspinal soft tissue extension 5 days after the PVP (Fig. 2C).

The patient received chemotherapy following PVP. The chemotherapy regime was 100 mg etoposide (days 1–3) and 60, 40 and 20 mg prednisone (days 1–7, 8–14 and 15–21, respectively) for 3 cycles. There were no serious side-effects of the chemotherapy. CT revealed that the paravertebral and intraspinal soft tissue extension disappeared after 3 cycles (Fig. 2D). The height of the vertebral body remained stable without further collapse and lumbar kyphosis did not occur. There was no recurrence and no other complaints over a 6-month follow-up period (Fig. 1C and D).


LCH is a rare disease associated with the proliferation of Langerhans cells (1,2). The incidence rate of LCH is approximately 1:1,500,000 (3). Although LCH mostly occurs during childhood, it may affect patients of any age from infants to elderly individuals. LCH is characterized by the clonal accumulation and/or proliferation of specific dendritic cells that resemble the normal epidermal Langerhans cell and are capable of infiltrating almost any organ (4). Although the cell of origin in this disease has now been defined, the exact etiology of LCH remains unknown. It is considered to be a neoplasm or infectious disease caused by a disorder during the immaturity of the immune system (5). LCH has 3 classic clinical syndromes that are considered to be variations of the same disease: i) eosinophilic granuloma; ii) Hand-Schüller-Christian disease; and iii) Letterer-Siwe disease (5).

The most frequent sites of the bony lesions of LCH are the skull, femur, mandible, pelvis and spine (3,6). LCH in the spine is reported to occur in between 6.5 and 25% of cases (7), with the most frequent site being the thoracic vertebrae (54%), followed by the lumbar (35%) and cervical (11%) vertebrae (5). Soft tissue extension has been reported in 50% of cases (6) and posterior arch extension in 65% (8).

The characteristic symptoms of LCH of the lumbar spine of adults are back pain, restricted range of motion and neurological symptoms, although neurological deficits are uncommon (9). Pain is explained by the onset of a collapse of the vertebral body with osteolysis. Neurological symptoms may be caused by the soft tissue extension. Spinal LCH is easy to misdiagnose as malignant tumors, lymphoma or tuberculosis. LCH should be included in the differential diagnosis of osteolytic and osteoblastic vertebral lesions. Although radiological studies and clinical characteristics may indicate the disease, these alone cannot result in a definitive diagnosis. Histopathological confirmation is essential. The histopathological diagnostic criteria require the expression of CD1a and S-100 antigen on the lesion cell surface for a definitive diagnosis (10).

There are various treatment modalities for LCH of the spine reported in the literature. Conservative measures are appropriate for mild isolated involvement of the spine without a risk of neurological damage or spinal instability, including simple observation, prolonged immobilization, nonsteroidal anti-inflammatory drugs or casting with or without initial bed rest (1113). Open surgery should be reserved for patients with severe mechanical instability or deformity and/or neurological deficits caused by the compression (8,11). Due to the potential for secondary malignancy and vertebral growth-plate damage in the skeletally immature patients, radiotherapy appears to be overtreatment in isolated osseous cases (7,14,15). In cases where the patient is a child, radiotherapy may lead to the early closure of vertebral growth (16). Chemotherapy is suggested for treating disseminated LCH, such as multiple bone lesions or multi-system disease (3). It has been reported that chemotherapy is safe and effective for the management of LCH of the spine in patients with soft tissue extension (6) and may significantly reduce recurrence rates (17). Although these treatments were reported to produce satisfactory results with a recurrence rate of less than 20%, there has been no evidence suggesting that any one treatment is more advantageous than another (1822).

PVP was developed by Galibert et al(23) and appears to offer an alternative to the preceeding treatments. The minimally invasive vertebroplasty apparatus consists of an introducing cannula, operative cannula, Kirschner guidewires, manual drill and reconstituted acrylic polymethylmethacrylate which is used to fill the vertebra via a transpedicular approach under C-arm imaging guidance. PVP is able to effectively relieve pain and strengthen the vertebra weakened by the disease, allowing spinal stabilization. PVP has been generally accepted as a safe and effective treatment option for patients with vertebral haemangioma (23), osteoporotic vertebral compression fractures (24) and spinal tumors (25). PVP is a new technique with a number of advantages; it is minimally invasive and does not require implants or open surgery and patients may recover rapidly. PVP is capable of relieving pain quickly and stabilizing the fracture by enhancing the rigidity and intensity of vertebra to allow early weight-bearing movements.

Only 3 cases concerning the treatment of LCH in the spine with PVP have been reported previously in the literature. Tan et al(26) performed PVP in a child with cervical LCH and the patient recovered well. Cardon et al used PVP in an adult with lumbar spine LCH and reported a good clinical result (27). Kevane et al performed PVP in an adult lumbar spine LCH case with marked symptomatic relief (28).

Although the mechanism of pain relief following PVP remains unclear, the majority of studies speculate that it may be due to: i) the heat generated during cement consolidation destroying the nerve endings in the surrounding tissues and killing tumor cells (29); ii) the injected bone cement improving the strength of the vertebral bodies and the stability of the spine, redistributing the mechanical forces, reducing the irritation to vertebral nerves (30,31); and iii) the cytotoxicity of the polymethylmethacrylate in the cement destroying nerve terminals and killing tumor cells (3235).

In conclusion, when conservative treatments are not feasible and open surgical treatment is an overtreatment, PVP is a suitable alternative for treating patients with the progressive lesions of LCH in the spine and the potential risk of progressive vertebral compression fractures and neural compression, and may be new indicators of PVP. PVP relieves pain quickly and stabilizes the fracture of the vertebra with minimal invasion. Patients are able to recover rapidly and make early weight-bearing movements. Combination chemotherapy for treating the paravertebral and intraspinal soft tissue extension is safe and effective and may also reduce recurrence. Although the short-term results of PVP for LCH of the spine are promising, long-term follow-ups are essential for demonstrating the efficacy of PVP in cases of spinal LCH.

1. Aster J,Kumar V. White cells, lymph nodes, spleen, and thymusRobbins Pathologic Basis of DiseaseCotran RS,Kumar V,Collins T,Robbins SLSaundersPhiladelphia, PA644686Year: 1999
2. Cheyne C. Histiocytosis XJ Bone Joint Surg Br53366382Year: 19715562364
3. Zhong WQ,Jiang L,Ma QJ,Liu ZJ,Liu XG,Wei F,Yuan HS,Dang GT. Langerhans cell histiocytosis of the atlas in an adultEur Spine J191922Year: 201019844749
4. Weitzman S,Egeler RMHistiocytic Disorders of Children and Adults: Basic Science, Clinical Features and TherapyCambridge University PressCambridgeYear: 2005
5. Azouz EM,Saigal G,Rodriguez MM,Podda A. Langerhans’ cell histiocytosis: pathology, imaging and treatment of skeletal involvementPediatr Radiol35103115Year: 200515289942
6. Peng XS,Pan T,Chen LY,Huang G,Wang J. Langerhans’ cell histiocytosis of the spine in children with soft tissue extension and chemotherapyInt Orthop33731736Year: 200918338168
7. Garg S,Mehta S,Dormans JP. Langerhans cell histiocytosis of the spine in children. Long-term follow-upJ Bone Joint Surg Am86-A17401750Year: 200415292423
8. Liu XG,Zhong WQ,Liu ZJ,Yuan HS,Jiang L,Ma QJ,Wei F,Dang GT. Diagnosis and treatment of Langerhans cell histiocytosis of the cervical spineZhongguo Ji Zhu Ji Sui Za Zhi19431436Year: 2009 (In Chinese).
9. Tanaka N,Fujimoto Y,Okuda T,Nakanishi K,Sumida T,Manabe H,Ochi M. Langerhans cell histiocytosis of the atlas. A report of three casesJ Bone Joint Surg Am8723132317Year: 200516203899
10. Aricó M,Girschikofsky M,Géneréau T,et al. Langerhans cell histiocytosis in adults. Report from the International Registry of the Histiocyte SocietyEur J Cancer3923412348Year: 200314556926
11. Bertram C,Madert J,Eggers C. Eosinophilic granuloma of the cervical spineSpine (Phila Pa 1976)2714081413Year: 200212131737
12. Ngu BB,Khanna AJ,Pak SS,et al. Eosinophilic granuloma of the atlas presenting as torticollis in a childSpine (Phila PA 1976)29E98E100Year: 200415129091
13. Yeom JS,Lee CK,Shin HY,Lee CS,Han CS,Chang H. Langerhans’ cell histiocytosis of the spine. Analysis of twenty-three casesSpine (Phila PA 1976)2417401749Year: 199910472109
14. Levy El,Scarrow A,Hamilton RC,Wollman MR,Fitz C,Pollack IF. Medical management of eosinophilic granuloma of the cervical spinePediatr Neurosurg31159162Year: 199910708359
15. Floman Y,Bar-On E,Mosheiff R,Mirovsky Y,Robin GC,Ramu N. Eosinophilic granuloma of the spineJ Pediatr Orthop B6260265Year: 19979343786
16. Greenberger JS,Crocker AC,Vawter G,Jaffe N,Cassady JR. Results of treatment of 127 patients with systemic histiocytosisMedicine (Baltimore)60311338Year: 19816974293
17. von Stebut E,Schadmand-Fischer S,Bräuninger W,Kreft A,Doberauer C,Steinbrink K. Successful treatment of adult multisystemic Langerhans cell histiocytosis with psoralen-UV-A, prednisolone, mercaptopurine, and vinblastineArch Dermatol144649653Year: 200818490592
18. Levine SE,Dormans JP,Meyer JS,Corcoran TA. Langerhans’ cell histiocytosis of the spine in childrenClin Orthop Relat Res323288293Year: 19968625594
19. Ladisch S,Gadner H. Treatment of Langerhans cell histiocytosis - evolution and current approachesBr J Cancer Suppl23S41S46Year: 19948075005
20. McLelland J,Broadbent V,Yeomans E,Malone M,Pritchard J. Langerhans cell histiocytosis: the case for conservative treatmentArch Dis Child65301303Year: 19902334209
21. Sessa S,Sommelet D,Lascombes P,Prévot J. Treatment of Langerhans-cell histiocytosis in children: experience at the Children’s Hospital of NancyJ Bone Joint Surg Am7615131525Year: 19947929499
22. Womer RB,Raney RB,D’Angio GJ. Healing rates of treated and untreated bone lesions in histiocytosis XPediatrics76286288Year: 19853875075
23. Galibert P,Deramond H,Rosat P,Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplastyNeurochirurgie33166168Year: 1987 (In French). 3600949
24. Kobayashi K,Shimoyama K,Nakamura K,Murata K. Percutaneous vertebroplasty immediately relieves pain of osteoporotic vertebral compression fractures and prevents prolonged immobilization of patientsEur Radiol15360367Year: 200515662480
25. Shimony JS,Gilula LA,Zeller AJ,Brown DB. Percutaneous vertebroplasty for malignant compression fractures with epidural involvementRadiology232846853Year: 200415273339
26. Tan HQ,Li MH,Wu CG,Gu YF,Zhang H,Fang C. Percutaneous vertebroplasty for eosinophilic granuloma of the cervical spine in a childPediatr Radiol3710531057Year: 200717704910
27. Cardon T,Hachulla E,Flipo RM,et al. Percutaneous vertebroplasty with acrylic cement in the treatment of a Langerhans cell vertebral histiocytosisClin Rheumatol13518521Year: 19947835021
28. Kevane B,Ryder DQ,Gilligan O. Percutaneous vertebroplasty in osteoporosis, myeloma and Langerhans’ cell histiocytosisIr Med J102212215Year: 200919772001
29. Coumans JV,Reinhardt MK,Lieberman IH. Kyphoplasty for vertebral compression fractures: 1-year clinical outcomes from a prospective studyJ Neurosurg991 Suppl4450Year: 200312859058
30. Belkoff SM,Mathis JM,Erbe EM,Fenton DC. Biomechanical evalution of a new bone cement for use in vertebroplastySpine (Phila Pa 1976)2510611064Year: 200010788848
31. Cotten A,Boutry N,Cortet B,et al. Percutaneous vertebroplasty: state of the artRadiographics18311320Year: 19989536480
32. Cotten A,Dewatre F,Cortet B,et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-upRadiol200525530Year: 1996
33. Weill A,Chiras J,Simon JM,et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cementRadiology199241247Year: 19958633152
34. Mathis JM,Barr JD,Belkoff SM,et al. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fracturesAJNR Am J Neuroradiol2237381Year: 200111156786
35. Radin EL,Rubin CT,Thrasher EL,et al. Changes in the bone-cement interface after total hip replacement: an in vivo animal studyJ Bone Joint Surg Am6411881200Year: 19827130231

Article Categories:
  • Articles

Keywords: percutaneous vertebroplasty, Langerhans cell histiocytosis, spine, adult.

Previous Document:  Evaluation of TGF?, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC.
Next Document:  Organ microenvironment affects growth and metastasis of hepatocellular carcinoma via the TGF-?/Smad ...