Document Detail

Paternal metabolic and cardiovascular risk factors for fetal growth restriction: a case-control study.
Jump to Full Text
MedLine Citation:
PMID:  23315598     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
OBJECTIVE: Fathers of low-birth weight offspring are more likely to have type 2 diabetes and cardiovascular disease in later life. We investigated whether paternal insulin resistance and cardiovascular risk factors were evident at the time that fetal growth-restricted offspring were born.
RESEARCH DESIGN AND METHODS: We carried out a case-control study of men who fathered pregnancies affected by fetal growth restriction, in the absence of recognized fetal disease (n = 42), compared with men who fathered normal-birth weight offspring (n = 77). All mothers were healthy, nonsmoking, and similar in age, BMI, ethnicity, and parity. Within 4 weeks of offspring birth, all fathers had measures of insulin resistance (HOMA index), blood pressure, waist circumference, endothelial function (flow-mediated dilatation), lipid profile, weight, and smoking habit. Comparison was made using multivariable logistical regression analysis.
RESULTS: Fathers of fetal growth-restricted offspring [mean (SD) 1.8th (2.2) customized birth centile] were more likely to have insulin resistance, hypertension, central adiposity, and endothelial dysfunction and to smoke cigarettes compared with fathers of normal grown offspring. After multivariable analysis, paternal insulin resistance and smoking remained different between the groups. Compared with fathers of normal grown offspring, men who fathered pregnancies affected by fetal growth restriction had an OR 7.68 (95% CI 2.63-22.40; P < 0.0001) of having a 1-unit higher log HOMA-IR value and 3.39 (1.26-9.16; P = 0.016) of being a smoker.
CONCLUSIONS: Men who recently fathered growth-restricted offspring have preclinical evidence of the insulin resistance syndrome and are more likely to smoke than fathers of normal grown offspring. Paternal lifestyle may influence heritable factors important for fetal growth.
Authors:
Sara Hillman; Donald M Peebles; David J Williams
Related Documents :
24936858 - Fetal growth cessation in late pregnancy: its impact on predicted size parameters used ...
1358508 - The transfer of thyroxine from the mother to the young of the marsupials, the bandicoot...
9219408 - Clinical aspects of recurrent postpartum thyroiditis.
12843128 - Clinical review 160: postpartum autoimmune thyroid disease: the potential role of fetal...
3739648 - Fetal surveillance in diabetic pregnancy. ii. the nonstress test versus the oxytocin ch...
2443008 - Outcomes in patients with unusually high maternal serum alpha-fetoprotein levels.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2013-01-11
Journal Detail:
Title:  Diabetes care     Volume:  36     ISSN:  1935-5548     ISO Abbreviation:  Diabetes Care     Publication Date:  2013 Jun 
Date Detail:
Created Date:  2013-05-24     Completed Date:  2013-12-26     Revised Date:  2014-06-03    
Medline Journal Info:
Nlm Unique ID:  7805975     Medline TA:  Diabetes Care     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1675-80     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Adult
Birth Weight / physiology
Cardiovascular Diseases / epidemiology*
Case-Control Studies
Fathers / statistics & numerical data*
Female
Fetal Growth Retardation / epidemiology*
Humans
Insulin Resistance / physiology*
Male
Risk Factors
Smoking / epidemiology
Waist Circumference / physiology
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Diabetes Care
Journal ID (iso-abbrev): Diabetes Care
Journal ID (hwp): diacare
Journal ID (pmc): dcare
Journal ID (publisher-id): Diabetes Care
ISSN: 0149-5992
ISSN: 1935-5548
Publisher: American Diabetes Association
Article Information
Download PDF
© 2013 by the American Diabetes Association.
creative-commons:
Received Day: 30 Month: 6 Year: 2012
Accepted Day: 23 Month: 11 Year: 2012
Print publication date: Month: 6 Year: 2013
Electronic publication date: Day: 15 Month: 5 Year: 2013
Volume: 36 Issue: 6
First Page: 1675 Last Page: 1680
PubMed Id: 23315598
ID: 3661816
Publisher Id: 1280
DOI: 10.2337/dc12-1280

Paternal Metabolic and Cardiovascular Risk Factors for Fetal Growth Restriction : A case-control study
Sara Hillman, MRCOG
Donald M. Peebles, FRCOG
David J. Williams, FRCP
Institute for Women’s Health, University College London, London, U.K.
Correspondence: Corresponding author: David J. Williams, d.j.williams@ucl.ac.uk.

Fetal growth is influenced by maternal in utero environment and genetic factors inherited from both parents. The combined influence of environment and genes can be seen through the dual effects of insulin on glucose metabolism and fetal growth. Whereas maternal diabetes and hyperglycemia lead to excess fetal insulin secretion and increased fetal growth (1), a fetus that inherits risk alleles for type 2 diabetes may have reduced insulin secretion or insulin resistance that lead to fetal growth restriction: the fetal insulin hypothesis (2,3).

The role of maternally inherited risk alleles for type 2 diabetes on fetal growth is difficult to assess owing to the confounding effect of maternal hyperglycemia on in utero environment (4). Support for the fetal insulin hypothesis has come from epidemiological studies that showed men who develop diabetes in later life were more likely to have fathered low–birth weight offspring (58). These fathers are also at increased risk of cardiovascular disease (9). Whether this latter observation is secondary to paternal diabetes or other risks shared by parents of low–birth weight offspring, such as smoking, is uncertain.

A study of nondiabetic families that specifically tested the fetal insulin hypothesis was unable to correlate paternal insulin resistance with offspring birth weight (10). Another study showed that men who fathered small-for-gestational-age infants were more likely to be obese and have larger waist circumferences but did not measure insulin resistance (11). We carried out a case-control study to investigate whether elements of the insulin resistance syndrome, including hyperinsulinemia, hyperglycemia, endothelial dysfunction, dyslipidemia, hypertension, and upper–body fat redistribution, could be observed in men at the time that they fathered growth-restricted offspring.


RESEARCH DESIGN AND METHODS

A case-control study was undertaken at University College London Hospital (UCLH) between September 2009 and May 2011. Ethics approval for the study was granted by the joint UCLH/UCL ethics committee (09/H0715/28). All participants gave informed consent.

Fetal growth restriction was defined as <10th customized centile (12). Nonpathological factors affecting birth weight are gestational age, maternal height, maternal weight at booking, parity, and ethnic group (12). We used customized centile software to generate a “customized” centile, which a particular weight has achieved in relation to expected birth weight (12). We included cases that were to have an induction of labor or delivery by caesarean section because of reduced fetal size. Two case subjects delivered after spontaneous labor after induction of labor was planned. These cases were included in the study.

Fetal growth restriction due to structural, infective, or chromosomal causes or multiple pregnancies was excluded. We also excluded fetal growth restriction due to maternal disease. Before the study started, we recorded the causes of fetal growth restriction among singleton pregnancies in our hospital. We found that 37.6% of pregnancies affected by fetal growth restriction were associated with maternal disease, 14.1% had fetal abnormalities, and 31.8% fulfilled our recruitment criteria. Data were unavailable for 16.5%.

Pregnant women and their partners thought to be having a normally grown baby were included if the estimated fetal weight was between the 10th and 95th customized centiles. We offered these participants an additional fetal ultrasound scan at 34 weeks to confirm predicted size.

A sample size calculation was made using STATA. Our initial calculation determined that 151 observations would be sufficient to detect a doubling in the odds ratio (OR) of a case having a unit increase in log homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR) after adjustment for other covariables at 0.80 power and 0.05 significance. We were able to make 119 observations but calculated from the study data that we were powered at 0.96 to detect a doubling in the odds of a case having a unit increase in log HOMA insulin resistance compared with a control subject.

We recruited 44 couples with a pregnancy affected by fetal growth restriction (case subjects) and 85 couples with normal grown offspring (control subjects). After delivery, 8 families (2 case and 6 control subjects) were excluded, as neonatal measures did not match predicted fetal growth. Two further control subjects withdrew consent to study participation after delivery. Two families of case subjects were approached, but the fetus died before consent, after which time they declined to participate. Final study analysis was between 42 case and 77 control subjects.

In order to minimize differences in fetal growth caused by maternal in utero environment, we only selected pregnant mothers as case or control subjects if they were older than 18 years, conceived naturally, had a BMI between 20 and 35 kg/m2, and did not have significant medical problems, take medications or recreational drugs, or smoke or drink alcohol during pregnancy. Women whose partner smoked had an additional antenatal test for cotinine (ABS Laboratories), a metabolite of nicotine, as an indicator of passive smoking.

All women and their partners who met inclusion criteria were approached while attending antenatal clinics or fetal ultrasound sessions. Some eligible participants responded to a research poster.

Each father completed a questionnaire inquiring about past medical, family, and treatment history. Own birth weight was recorded as remembered personally or from a parent. All study assessments were carried out in the Clinical Research Facility, UCLH. Men were studied within 4 weeks of offspring birth. The study room was temperature controlled at 24°C. Participants were asked to fast overnight for at least 10 h before study. Weight, height, and waist circumference (measured twice between the top of the iliac crests) were recorded. After resting, two measures of supine blood pressure were taken 15 min apart.

Fasting venous insulin, glucose, and lipid levels were measured. Insulin resistance was calculated using the HOMA model (13). We chose the HOMA model for its simplicity and correlation with more invasive tests of insulin resistance, such as glucose tolerance test (13) and euglycemic clamp (14). The blood was spun within 1 h of venepuncture, and plasma and serum were frozen at −80°C. All blood samples were processed in the same laboratory.

Endothelial function was measured using brachial artery flow-mediated dilatation by a single operator (S.H.) in a quiet, temperature-controlled room in accordance with previously reported protocols (15). Each image recording was validated by a second operator unaware of the subjects’ group. This led to 22 (18.5%) scans being excluded from the final analysis owing to lack of agreement.

At the time of childbirth, umbilical cord blood was taken from the umbilical vein or artery, centrifuged, and stored at −80°C as plasma and serum for later measures of fetal insulin and C-peptide levels. Gestational length and offspring sex, weight, and length were recorded.

In order to assess how many fathers fulfilled a definition of the insulin resistance syndrome, we applied criteria of the European Group for the Study of Insulin Resistance (16). This definition includes nondiabetic individuals with the highest level (top 25%) of insulin resistance. Additional risk factors include 1) central obesity, waist circumference ≥94 cm; 2) dyslipidemia, triglycerides ≥2.0 mmol/L or HDL cholesterol <1.0 mmol/L or treated for dyslipidemia; 3) hypertension, blood pressure ≥140/90 mmHg; and 4) fasting plasma glucose at least 6.1 mmol/L.

Statistical analysis

Statistical analysis was performed using the STATA 11 package with assistance from a UCL statistician. HOMA-IR was loge transformed to improve normality. All results are recorded as mean (SD) unless otherwise stated. Data were initially analyzed by univariable logistic regression. The sample size allowed us to use the four coefficients with the lowest P value to generate a multivariable model. The variables that remained significant were used to generate the final model. Sensitivity analysis using forward step-wise regression confirmed the validity of this approach. Maternal factors were forced into the final model and the results from the two models compared.


RESULTS

Baseline characteristics of offspring confirmed that case and control subjects met the study criteria and that mothers of both case and control subjects had a similar phenotype (Table 1). Fathers of growth-restricted offspring (case subjects) had greater waist circumference and blood pressure and were more likely to smoke than fathers of normal grown offspring (Table 2). Fasting glucose and insulin levels were both higher in case subjects, which resulted in an elevated log HOMA-IR (Table 2). Cases also had lower measures of flow-mediated dilatation and tended to have a more atherogenic lipid profile (Table 2).

Initial univariable logistical regression analysis confirmed that paternal insulin resistance, blood pressure, and waist circumference were higher in case compared with control subjects, while flow-mediated dilatation was reduced and case fathers were more likely to smoke cigarettes (Table 3). The four most statistically significant paternal coefficients were log HOMA-IR, smoking, waist circumference, and diastolic blood pressure, which were analyzed in the multivariable analysis. Paternal insulin resistance and smoking remained different after multivariable analysis, and therefore the final model was run with these two variables (Table 3).

Compared with fathers of normal grown offspring, men who fathered pregnancies affected by fetal growth restriction had an OR 7.68 (95% CI 2.63–22.4, P < 0.0001) of having a 1-unit higher log HOMA-IR value and 3.39 (1.26–9.16, P = 0.016) of being a smoker (Table 3). With use of step-wise regression, no maternal variable affected these differences in paternal insulin resistance or smoking. In sensitivity analyses using forward stepwise regression and first including all paternal explanatory variables followed by additional maternal explanatory variables (maternal age and BMI), paternal smoking and insulin resistance were confirmed as the two significant variables.

With use of criteria for the insulin resistance syndrome defined by the European Group for the Study of Insulin Resistance in nondiabetic individuals (16), the majority of men in the highest quartile for insulin resistance (n = 30 of 119) were case subjects (19 of 42 case subjects [45%] compared with 11 of 77 control subjects [14%]) (Fig. 1). Most of these case subjects (10 of 19 [53%]) also had an increased waist circumference >94 cm, which was only noted in 2 of 11 (18%) control subjects (Fig. 1). We used this information to generate a second model limited to fathers in the top quartile for insulin resistance. After multivariable analysis, men in the top quartile for insulin resistance who fathered a growth-restricted fetus had an OR 6.72 (95% CI 2.43–18.58; P < 0.0001) of having further risk factors for the insulin resistance syndrome and 3.36 (1.28–8.28; P < 0.013) of being a smoker compared with fathers of normal grown offspring.

Umbilical cord blood from fetal growth–restricted offspring (n = 10) and normal grown offspring (n = 20) had similar insulin levels [5.89 (7.6) and 5.40 (3.5) mIU/L, respectively, P = 0.81] and similar C-peptide levels [1.02 (0.75) and 1.06 (0.42) ug/L, P = 0.9]. There was no correlation between fetal cord blood insulin and paternal insulin levels.

Parental birth weight was known in 57 (48%) fathers and 65 (55%) mothers. Case fathers were lighter than control fathers [birth weight 3,127 (597) vs. 3,506 (380) g, respectively, P = 0.0045]. Case mothers were lighter than control mothers [birth weight 3,007 (576) vs. 3,322 (425) g, P = 0.012].

Maternal random glucose levels were similar during pregnancy [case subjects 4.45 (0.52) mmol/L and control subjects 4.54 (0.54) mmol/L, P = 0.44] and remained similar postpartum [case subjects 4.53 (0.37) mmol/L and control subjects 4.57 (0.46) mmol/L, P = 0.78]. Postpartum, maternal insulin levels were also similar between case [4.38 (2.41) mIU/L] and control [3.97 (2.15) mIU/L] subjects; P = 0.57. Postnatal maternal HOMA index was similar between case [0.58 (0.29)] and control [0.56 (0.24)] subjects; P = 0.57.

Only 3 women (2 case and 1 control) of a sample of 17 who had a partner who smoked had detectable serum cotinine levels. These levels were compatible with passive smoking (15.7, 45.9, and 59.3 ng/mL).


CONCLUSIONS

This case-control study identified women with pregnancies affected by fetal growth restriction and showed that their partners were more insulin resistant and more likely to smoke compared with fathers of normal grown offspring. Fathers of growth-restricted offspring also had other elements of the insulin resistance syndrome, including high blood pressure, endothelial dysfunction, upper–body fat redistribution, and a more atherogenic lipid profile. These observations support epidemiological studies that have consistently observed an increased incidence of type 2 diabetes and cardiovascular disease among men who previously fathered low–birth weight offspring (59).

Although our study provides objective evidence of subclinical insulin resistance at the time of fathering growth-restricted offspring, the Exeter Family Study of Childhood Health (EFSOCH), which studied almost 1,000 normal grown offspring and their fathers, did not find an association between offspring birth weight and paternal insulin resistance (10). Unlike our study, the EFSOCH study only investigated offspring with a normal birth weight (2.95–3.98 kg). Under these circumstances, paternally inherited insulin resistance may be compensated by increases in fetal insulin production. This suggestion was supported by their observation that paternal insulin resistance was inversely correlated with fetal insulin concentrations (17). In a subset of our study population, we were unable to detect such a relationship between paternal insulin resistance and fetal cord blood insulin or C-peptide levels. It is possible that our secondary analysis did not have statistical power to detect such a correlation. Another explanation is that our study case subjects may have included a mixture of growth-restricted offspring, some with insulin resistance and high fetal insulin levels and others with reduced β-cell function and low fetal insulin secretion, so that we were unable to detect a clear difference in overall insulin levels between case and control subjects. It is possible that other heritable factors that are passed from father to offspring influence both paternal phenotype and fetal growth.

We also showed that men who fathered growth-restricted offspring were themselves smaller at birth. This observation could be explained by either the inheritance of genes that limit fetal growth, such as is described in the fetal insulin hypothesis, or fetal adaptations in response to relative malnutrition in utero (the thrifty phenotype [18]). Fetal growth restriction is associated with an increased risk of perinatal death (19). It is also possible that survivors of fetal growth restriction, like all the case subjects in our study, have inherited paternal characteristics that predispose to weight gain and cardiovascular risk factors. During our study, two cases of fetal growth restriction resulted in intrauterine death, but the families were unwilling to participate in the study. Whether families of fetal growth–restricted offspring that result in perinatal death are different from families of survivors remains a challenging question to answer.

In our case-control study, we minimized the effect of maternal environment by only including healthy pregnant women within prespecified phenotypic limits and excluding fetal growth restriction due to recognized maternal or fetal diseases. This allowed us to study pregnancies predominantly affected by placental disease. These predetermined maternal inclusion criteria are likely to have strengthened the effects of paternally inherited factors. Others have found that men who father small-for-gestational-age offspring are more likely to be overweight and to have a greater waist circumference than fathers of normal grown offspring (11). Our study adds objective measures of paternal insulin resistance, endothelial function, and lipid profile to these phenotypic characteristics.

In our study, differences in blood pressure and endothelial function between the groups were no longer evident after adjustment for paternal smoking. Cigarette smoking is known to independently raise blood pressure and impair flow-mediated dilatation (20). Maternal smoking is a recognized risk factor for fetal growth restriction (21). We therefore excluded women who smoked from our study. However, the partners of some women smoked during pregnancy. Paternal smoking has previously been associated with fetal growth restriction and correlates with levels of maternal cotinine (22). In our study, maternal cotinine was only detectable in serum of 3 of 17 women whose partner smoked, compatible with low-level passive smoking. Although we did not check fetal cotinine levels from umbilical cord blood, it is unlikely that maternal passive smoking contributed to fetal growth restriction in our study. Maternal smoking can cause epigenetic change to human placental genes (22). It is currently unknown whether paternal smoking can cause epigenetic change that is inherited by the fetus and placenta.

For pragmatic reasons, we measured insulin resistance using the HOMA model derived from fasting insulin and glucose. A more robust but invasive technique is the euglycemic insulin clamp (14). HOMA correlates well with clamp-derived methods (14) and in our study is supported by other parameters associated with the insulin resistance syndrome.

Only four fathers of growth-restricted pregnancies (9.5% of cases) fulfilled a European definition of the insulin resistance syndrome (16). However, the majority of cases in the top 25% for insulin resistance also had central obesity as defined by a waist circumference >94 cm. Insulin resistance is closely linked with central obesity, which in turn precedes other elements of the metabolic syndrome (23). Subclinical insulin resistance at the time of fathering growth-restricted offspring not only explains the association with future paternal type 2 diabetes and cardiovascular disease but also identifies a group of men with a reversible risk factor for future metabolic and vascular disease (24), just as gestational diabetes mellitus identifies women at risk for future diabetes (25).

In men with established type 2 diabetes, a log unit increase in HOMA-IR has been associated with a 31% increased risk of cardiovascular disease (26). Insulin resistance in men without diabetes is an independent risk factor for future cardiovascular disease (27,28). Dietary and lifestyle measures can reverse insulin resistance and reduce future cardiovascular risk (29,30). Our observations, at the time of fathering a growth-restricted offspring, suggest that these men may benefit from advice on a healthy lifestyle as part of primary prevention of diabetes and cardiovascular disease.

Inheritance of common insulin control genes (31), rarer monogenic disorders of glucose metabolism (2), or other as yet unidentified heritable factors may explain our observed link between paternal insulin resistance and fathering growth-restricted offspring. It is possible that paternal lifestyle leading to obesity and smoking may drive epigenetic change that leads to insulin resistance, which is inherited by offspring and manifests as fetal growth restriction (32). This latter possibility requires further investigation.


Acknowledgments

S.H. is funded by a Clinical Research Training Fellowship from the Wellbeing of Women, London, U.K. D.J.W. receives part of his funding from the UCL/UCLH Biomedical Research Centre. The study was funded by a Joan Dawkins award through the British Medical Association, London, U.K. Statistical help was provided by the Biostatistics Group of the UCLH/UCL National Institute for Health Research Comprehensive Biomedical Research Centre, which received a proportion of funding from the funding scheme of the National Institute for Health Research Biomedical Research Centre of the Department of Health.

No potential conflicts of interest relevant to this article were reported.

S.H. contributed to the study conception and design, analysis and interpretation of data, and revision of the manuscript. D.M.P. contributed to study design and revision of the manuscript. D.J.W. conceived the project idea and contributed to study design, interpretation of data, and writing of the manuscript. D.J.W. is the guarantor of this work, and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

The authors are grateful to A. Jeffery-Smith, T. Kubba, and M. Whitten, all of UCLH, for their assistance with case identification, sample collection, and some phenotypic measures.


References
1. Pedersen J. Diabetes and Pregnancy:Blood Sugar of Newborn Infants Copenhagen, Denmark, Danish Science Press, 1952, p. 230
2. Hattersley AT,Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. LancetYear: 1999;353:1789–179210348008
3. Freathy RM,Bennett AJ,Ring SM,et al. Type 2 diabetes risk alleles are associated with reduced size at birth. DiabetesYear: 2009;58:1428–143319228808
4. Whincup PH,Kaye SJ,Owen CG,et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMAYear: 2008;300:2886–289719109117
5. Davey Smith G,Sterne JAC,Tynelius P,Rasmussen F. Birth characteristics of offspring and parental diabetes: evidence for the fetal insulin hypothesis. J Epidemiol Community HealthYear: 2004;58:126–12814729891
6. Wannamethee SG,Lawlor DA,Whincup PH,Walker M,Ebrahim S,Davey-Smith G. Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood: cross sectional survey. DiabetologiaYear: 2004;47:12–1814647894
7. Lindsay RS,Dabelea D,Roumain J,Hanson RL,Bennett PH,Knowler WC. Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. DiabetesYear: 2000;49:445–44910868967
8. Hyppönen E,Smith GD,Power C. Parental diabetes and birth weight of offspring: intergenerational cohort study. BMJYear: 2003;326:19–2012511454
9. Davey Smith G,Hyppönen E,Power C,Lawlor DA. Offspring birth weight and parental mortality: prospective observational study and meta-analysis. Am J EpidemiolYear: 2007;166:160–16917485730
10. Knight B,Shields BM,Hill A,et al. Offspring birthweight is not associated with paternal insulin resistance. DiabetologiaYear: 2006;49:2675–267816953379
11. McCowan LM,North RA,Kho EM,et al. Paternal contribution to small for gestational age babies: a multicenter prospective study. Obesity (Silver Spring)Year: 2011;19:1035–103921127471
12. Gardosi J,Chang A,Kalyan B,Sahota D,Symonds EM. Customised antenatal growth charts. LancetYear: 1992;339:283–2871346292
13. Matthews DR,Hosker JP,Rudenski AS,Naylor BA,Treacher DF,Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. DiabetologiaYear: 1985;28:412–4193899825
14. Bonora E,Targher G,Alberiche M,et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes CareYear: 2000;23:57–6310857969
15. Donald AE,Halcox JP,Charakida M,et al. Methodological approaches to optimize reproducibility and power in clinical studies of flow-mediated dilation. J Am Coll CardiolYear: 2008;51:1959–196418482664
16. Balkau B,Charles MA,European Group for the Study of Insulin Resistance (EGIR)Comment on the provisional report from the WHO consultation. Diabet MedYear: 1999;16:442–44310342346
17. Shields BM,Knight B,Turner M,et al. Paternal insulin resistance and its association with umbilical cord insulin concentrations. DiabetologiaYear: 2006;49:2668–267416703330
18. Hales CN,Barker DJP,Clark PMS,et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJYear: 1991;303:1019–10221954451
19. Cruz-Lemini M,Crispi F,Van Mieghem T,et al. Risk of perinatal death in early-onset intrauterine growth restriction according to gestational age and cardiovascular Doppler indices: a multicenter study. Fetal Diagn TherYear: 2012;32:116–12222777088
20. Tomiyama H,Matsumoto C,Yamada J,et al. The relationships of cardiovascular disease risk factors to flow-mediated dilatation in Japanese subjects free of cardiovascular disease. Hypertens ResYear: 2008;31:2019–202519098373
21. Reeves S,Bernstein I. Effects of maternal tobacco smoke exposure on fetal growth and maternal size. Expert review. Obstet GynecolYear: 2008;3:719–730
22. Suter M,Abramovici A,Showalter L,et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. MetabolismYear: 2010;59:1481–149020462615
23. Cameron AJ,Boyko EJ,Sicree RA,et al. Central obesity as a precursor to the metabolic syndrome in the AusDiab study and Mauritius. Obesity (Silver Spring)Year: 2008;16:2707–271618820650
24. Reddy KJ,Singh M,Bangit JR,Batsell RR. The role of insulin resistance in the pathogenesis of atherosclerotic cardiovascular disease: an updated review. J Cardiovasc Med (Hagerstown)Year: 2010;11:633–64720164784
25. Bellamy L,Casas JP,Hingorani AD,Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. LancetYear: 2009;373:1773–177919465232
26. Bonora E,Formentini G,Calcaterra F,et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complication Study. Diabetes CareYear: 2002;25:1134–1141
27. Nakamura K,Sakurai M,Miura K,et al. Homeostasis model assessment of insulin resistance and the risk of cardiovascular events in middle-aged non-diabetic Japanese men. DiabetologiaYear: 2010;53:1894–190220502862
28. Hanley AJG,Williams K,Stern MP,Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes CareYear: 2002;25:1177–118412087016
29. Eriksson J,Lindström J,Valle T,et al. Prevention of Type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. DiabetologiaYear: 1999;42:793–80110440120
30. Caterson ID,Finer N,Coutinho W,et al. SCOUT InvestigatorsMaintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial. Diabetes Obes MetabYear: 2012;14:523–53022192338
31. Freathy RM,Mook-Kanamori DO,Sovio U,et al. Genetic Investigation of ANthropometric Traits (GIANT) ConsortiumMeta-Analyses of Glucose and Insulin-related traits ConsortiumWellcome Trust Case Control ConsortiumEarly Growth Genetics (EGG) ConsortiumVariants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat GenetYear: 2010;42:430–43520372150
32. Ng SF,Lin RC,Laybutt DR,Barres R,Owens JA,Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. NatureYear: 2010;467:963–96620962845

Figures

[Figure ID: F1]
Figure 1 

Association between paternal insulin resistance syndrome and fathering a pregnancy affected by fetal growth restriction (FGR). Fathers with insulin levels in the highest quartile were selected (n = 30). This included 19 of 42 (45%) case subjects and 11 of 77 (14%) control subjects. The majority of men in this top quartile for insulin resistance who fathered growth-restricted offspring had one or two further risk factors for the insulin resistance syndrome (14 of 19 [74%]). In particular, 10 of 19 (53%) case subjects had a waist circumference >94 cm compared with only 2 of 11 (18%) control subjects. Furthermore, 7 of 19 (37%) fathers of growth-restricted offspring but only 3 of 11 (27%) fathers of normal grown offspring had other risk factors for the insulin resistance syndrome.



Tables
[TableWrap ID: T1] Table 1 

Baseline maternal and offspring phenotype



[TableWrap ID: T2] Table 2 

Baseline paternal phenotype



[TableWrap ID: T3] Table 3 

Logistical regression of paternal variables




Article Categories:
  • Original Research
    • Cardiovascular and Metabolic Risk


Previous Document:  Insulin-like growth factors and insulin-like growth factor-binding proteins and prostate cancer risk...
Next Document:  How metformin acts in PCOS pregnant women: insights into insulin secretion and peripheral action at ...