Document Detail

PaCO2 and alveolar dead space are more relevant than PaO2/FiO2 ratio in monitoring the respiratory response to prone position in ARDS patients: a physiological study.
Jump to Full Text
MedLine Citation:
PMID:  21791044     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
INTRODUCTION: Our aims in this study were to report changes in the ratio of alveolar dead space to tidal volume (VDalv/VT) in the prone position (PP) and to test whether changes in partial pressure of arterial CO2 (PaCO2) may be more relevant than changes in the ratio of partial pressure of arterial O2 to fraction of inspired O2 (PaO2/FiO2) in defining the respiratory response to PP. We also aimed to validate a recently proposed method of estimation of the physiological dead space (VDphysiol/VT) without measurement of expired CO2.
METHODS: Thirteen patients with a PaO2/FiO2 ratio < 100 mmHg were included in the study. Plateau pressure (Pplat), positive end-expiratory pressure (PEEP), blood gas analysis and expiratory CO2 were recorded with patients in the supine position and after 3, 6, 9, 12 and 15 hours in the PP. Responders to PP were defined after 15 hours of PP either by an increase in PaO2/FiO2 ratio > 20 mmHg or by a decrease in PaCO2 > 2 mmHg. Estimated and measured VDphysiol/VT ratios were compared.
RESULTS: PP induced a decrease in Pplat, PaCO2 and VDalv/VT ratio and increases in PaO2/FiO2 ratios and compliance of the respiratory system (Crs). Maximal changes were observed after six to nine hours. Changes in VDalv/VT were correlated with changes in Crs, but not with changes in PaO2/FiO2 ratios. When the response was defined by PaO2/FiO2 ratio, no significant differences in Pplat, PaCO2 or VDalv/VT alterations between responders (n = 7) and nonresponders (n = 6) were observed. When the response was defined by PaCO2, four patients were differently classified, and responders (n = 7) had a greater decrease in VDalv/VT ratio and in Pplat and a greater increase in PaO2/FiO2 ratio and in Crs than nonresponders (n = 6). Estimated VDphysiol/VT ratios significantly underestimated measured VDphysiol/VT ratios (concordance correlation coefficient 0.19 (interquartile ranges 0.091 to 0.28)), whereas changes during PP were more reliable (concordance correlation coefficient 0.51 (0.32 to 0.66)).
CONCLUSIONS: PP induced a decrease in VDalv/VT ratio and an improvement in respiratory mechanics. The respiratory response to PP appeared more relevant when PaCO2 rather than the PaO2/FiO2 ratio was used. Estimated VDphysiol/VT ratios systematically underestimated measured VDphysiol/VT ratios.
Authors:
Cyril Charron; Xavier Repesse; Koceïla Bouferrache; Laurent Bodson; Samuel Castro; Bernard Page; François Jardin; Antoine Vieillard-Baron
Related Documents :
21875514 - Pulmonary hypertension associated with left heart disease: characteristics, emerging co...
22183044 - Masked hypertension and echocardiographic left ventricular hypertrophy: an updated over...
21617334 - Seasonal variation in estimated glomerular filtration rate based on serum creatinine le...
21707444 - Analysis of v/q-matching-a safety "biomarker" in pulmonary drug development?
2048574 - Effect of recombinant human erythropoietin therapy on blood pressure in hemodialysis pa...
3741784 - Hyper-induction of skin ornithine decarboxylase activity in psoriatic patients.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2011-07-25
Journal Detail:
Title:  Critical care (London, England)     Volume:  15     ISSN:  1466-609X     ISO Abbreviation:  Crit Care     Publication Date:  2011  
Date Detail:
Created Date:  2011-12-06     Completed Date:  2012-08-21     Revised Date:  2013-06-28    
Medline Journal Info:
Nlm Unique ID:  9801902     Medline TA:  Crit Care     Country:  England    
Other Details:
Languages:  eng     Pagination:  R175     Citation Subset:  IM    
Affiliation:
Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Ambroise Paré University Hospital, AP-HP, 9 Av Charles de Gaulle, F-92104 Boulogne-Billancourt Cedex, France.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Blood Gas Analysis / methods
Capnography
Carbon Dioxide / blood*
Humans
Middle Aged
Monitoring, Physiologic / methods*
Positive-Pressure Respiration
Prone Position / physiology*
Pulmonary Alveoli / physiopathology*
Pulmonary Gas Exchange / physiology
Respiratory Distress Syndrome, Adult / physiopathology*
Tidal Volume / physiology
Chemical
Reg. No./Substance:
124-38-9/Carbon Dioxide
Comments/Corrections
Comment In:
Crit Care. 2011;15(5):185   [PMID:  22067424 ]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Crit Care
Journal ID (iso-abbrev): Crit Care
ISSN: 1364-8535
ISSN: 1466-609X
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2011 Charron et al.; licensee BioMed Central Ltd.
open-access:
Received Day: 27 Month: 4 Year: 2011
Revision Received Day: 28 Month: 6 Year: 2011
Accepted Day: 25 Month: 7 Year: 2011
Print publication date: Year: 2011
Electronic publication date: Day: 25 Month: 7 Year: 2011
Volume: 15 Issue: 4
First Page: R175 Last Page: R175
ID: 3387618
Publisher Id: cc10324
PubMed Id: 21791044
DOI: 10.1186/cc10324

PaCO2 and alveolar dead space are more relevant than PaO2/FiO2 ratio in monitoring the respiratory response to prone position in ARDS patients: a physiological study
Cyril Charron12 Email: cyril.charron@apr.aphp.fr
Xavier Repesse12 Email: xavier.repesse@psl.aphp.fr
Koceïla Bouferrache12 Email: koceila.bouferrache@apr.aphp.fr
Laurent Bodson12 Email: laurent.bodson@apr.aphp.fr
Samuel Castro12 Email: samuel.castro@psl.aphp.fr
Bernard Page12 Email: bernard.page@apr.aphp.fr
François Jardin12 Email: francois.jardin@apr.aphp.fr
Antoine Vieillard-Baron12 Email: antoine.vieillard-baron@apr.aphp.fr
1Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Ambroise Paré University Hospital, AP-HP, 9 Av Charles de Gaulle, F-92104 Boulogne-Billancourt Cedex, France
2Faculté de Paris Ile-de-France Ouest, Université de Versailles Saint Quentin en Yvelines, 9 boulevard d'Alembert, F-78280 Guyancourt, France

Introduction

Since its first description in 1967 [1], it has been accepted that acute respiratory distress syndrome (ARDS) includes a number of lung injuries of various origins whose consequences are decreased lung capacity available for ventilation, leading to the concept of "baby lung" [2]. Considerable progress has been made over the past decade in the ventilatory management of patients with ARDS. In particular, a strict limitation of tidal volume (VT) and plateau pressure (Pplat) below 30 cmH2O reduces mortality [3]. The application of positive end-expiratory pressure (PEEP) is recognized to recruit the lung and to restore functional residual capacity [4], but its optimum level is still widely debated [5].

The prone position (PP) may also be part of the ventilatory strategy. This method was proposed more than 30 years ago, initially in pathophysiological studies [6,7]. Recently, Sud et al. [8] suggested, on the basis of pooled data from randomized, controlled trials, that PP may improve survival in the subgroup of patients with the most severe ARDS, that is, those with a ratio of partial pressure of arterial O2 to fraction of inspired O2 (PaO2/FiO2) < 100 mmHg. Many questions remain unresolved. In particular, response to PP is usually defined according to changes in PaO2, with responders being those in whom the PaO2/FiO2 ratio increases > 20 mmHg after one to six hours in the PP [9-11]. However, we have previously reported that PP allows recruitment of a slow compartment previously excluded from ventilation [12]. This was associated with a decrease in partial pressure of arterial CO2 (PaCO2), an indirect reflection of the reduction of the alveolar dead space (VDalv) [12]. Gattinoni et al. [10] also reported that the prognosis is improved in patients in whom PaCO2 declines after an initial PP session. Finally, VDalv appears to be an independent risk factor for mortality in patients with ARDS [13]. In a recent study, Siddiki et al. [14] proposed evaluating the physiological dead space fraction (VDphysiol/VT) by using a rearranged alveolar gas equation for PaCO2 without any expired CO2 measurement.

In this context, we conducted a prospective physiological study to evaluate the impact of PP on ventilatory mechanics, gas exchange and VDalv. Our main objective was to validate our hypothesis that changes in PaCO2 and VDalv might be more relevant than changes in PaO2 in defining the respiratory response to PP. Our second objective was to validate the method of evaluation of the VDphysiol/VT proposed by Siddiki et al. [14].


Materials and methods

In our unit, patients with a PaO2/FiO2 ratio < 100 mmHg after 24 to 48 hours of mechanical ventilation are systematically turned to PP when hemodynamically stable [15]. Our study was approved by the Ethics Committee of the "Société de Réanimation de Langue Française" (SRLF-CE 07-213). After obtaining informed consent from the patients' relatives, 15 patients were included in the study between January 2008 and March 2010. Inclusion criteria were (1) the presence of ARDS according to the definition of the Acute Respiratory Distress Syndrome Network [3]; (2) persistence of severe hypoxemia after 48 hours of mechanical ventilation, defined as a PaO2/FiO2 ratio < 100 mmHg; and (3) hemodynamic stability, defined as systolic blood pressure > 90 mmHg with norepinephrine infusion at a rate < 0.5 μg/kg/minute. Patients with chronic obstructive pulmonary disease were excluded.

All patients were ventilated in volume-controlled mode (Servo-i; Maquet SA, Ardon, France), sedated and paralyzed by infusion of atracurium. The heat and moisture exchanger was routinely removed and replaced by a heated humidifier to reduce instrumental dead space as previously reported [16]. The ventilator settings included a "moderately restricted" VT of 6 to 8 mL/kg measured body weight, a respiratory rate allowing us to limit hypercapnia without generating intrinsic PEEP and an inspiration/expiration ratio of 1:2 with an end inspiratory pause of 0.5 seconds. Pplat was strictly limited < 30 cmH2O, and the PEEP selected was that which corrected the intrinsic PEEP, if any [17]. Ventilator settings were kept constant throughout the study. A recruitment maneuver was never used, and suction was not systematically performed. All patients were continuously monitored in terms of blood pressure with an arterial catheter, heart rate and O2 saturation by pulse oximetry.

The study was conducted during the first session of PP. Our sessions routinely last 15 to 18 hours per day. Blood gas analysis, Pplat, total PEEP, end-tidal CO2 (PetCO2) and mixed expired CO2 (PECO2) were recorded with the patient in the supine position, just before turning the patient to the PP, and every 3 hours in the PP until 15 hours had elapsed. Expired CO2 was measured by a sensor positioned between the proximal end of the endotracheal tube and the Y piece of the ventilator circuit (COSMO; Novametrix, Wallingford, CT, USA). The ratio of VD/VT was calculated using the simplified Bohr equation [18] as follows: (1) VDalv/VT = 1 - PetCO2/PaCO2 and (2) VDphysiol/VT = 1 - PECO2/PaCO2.

The estimated VDphysiol/VT ratio was calculated as 1 - [(0.86 × VCO2est)/(VE × PaCO2)], where VCO2est is the estimated CO2 production calculated using the Harris-Benedict equation [19] and VE is the expired minute ventilation.

Intrinsic PEEP was measured during a four-second end-expiratory occlusion period. Pplat was measured during a 0.5-second end-inspiratory pause. Respiratory system compliance (Crs) was calculated as Crs = VT/(Pplat - PEEPtotal). Responders to PP were defined in two different ways: (1) an increase in PaO2/FiO2 ratio > 20 mmHg after 15 hours of PP or (2) a decrease in PaCO2 > 2 mmHg after 15 hours of PP.

Statistical analysis

Statistical analysis was performed using StatView 5 software (SAS Institute Inc., Cary, NC, USA). The continuous variables were expressed as medians (1st to 3rd interquartile range). Analysis of variance for repeated measurements was used for each parameter, and P < 0.05 was considered statistically significant. Measured VDphysiol/VT and estimated VDphysiol/VT were compared according to Bland-Altman analysis, together with the concordance correlation coefficient in 78 paired data. The same method was used to compare variations of measured and estimated VDphysiol/VT every three hours while the patient was in PP.


Results

Two patients were excluded from the study because of a history of severe chronic obstructive pulmonary disease, which left a study population of 13 patients. The patients' median age was 53 years (1st to 3rd interquartile range, 48 to 59 years), their median Simplified Acute Physiology Score II score was 62 (1st to 3rd interquartile range, 35 to 71) and their median Sequential Organ Failure Assessment score was 11 (1st to 3rd interquartile range, 8-13). All patients except one had ARDS of pulmonary origin. Eight patients had pneumonia, with six cases related to streptococcus pneumonia and two due to influenza (H1N1 virus). Two patients had aspiration, one had toxic shock syndrome and two had ARDS due to miscellaneous causes. No patient had abdominal hypertension or traumatic lung injury. Eleven patients required norepinephrine infusion. Respiratory parameters and blood gas analysis at the time of inclusion are reported in Table 1.

A significant increase in PaO2/FiO2 ratio occurred after 15 hours of PP, from 70 mmHg (51 to 77) in the supine position to 99 mmHg in the prone (83 to 139) (P < 0.0001) (Table 2). A significant decrease in PaCO2 was also observed, from 58 mmHg (52 to 60) to 52 mmHg (47 to 56) (P = 0.04) (Table 2), with the lowest value occurring after nine hours of PP. As noted in Table 2, Pplat was significantly reduced (P = 0.0004) and Crs improved (from 16 mL/cmH2O (13 to 30) to 18 mL/cmH2O (15 to 30); P = 0.02). Finally, the VDalv/VT ratio was significantly reduced from 0.42 (0.35 to 0.47) to 0.40 (0.26 to 0.45), with the lowest value occurring after three hours in PP (hour 3) (0.31) (Table 2).

Seven patients were classified as "PaO2 responders" and six were classified as "PaO2 nonresponders" according to PaO2/FiO2 ratio changes. No differences in VDalv/VT ratios or PaCO2 or Pplat alterations during PP were observed between groups (Table 3 and Figure 1), whereas Crs increased more in the responders (Table 3). Seven patients were also classified as "PaCO2 responders" and six as "PaCO2 nonresponders" according to the PaCO2 changes. However, when compared with the PaO2/FiO2 classification, four patients were classified differently. As shown in Table 4 and Figure 2, VDalv/VT, PaO2/FiO2, PaCO2, Pplat and Crs were significantly more altered in responders than in nonresponders. As shown in Figure 3, we found no correlation between changes in VDalv/VT and changes in PaO2/FiO2 (P = 0.95), whereas we found a negative correlation between changes in VDalv/VT and changes in Crs (r = 0.29, P = 0.03).

As shown in Figure 4, estimated VDphysiol/VT systematically underestimated measured VDphysiol/VT, with a poor concordance correlation coefficient of 0.19 (95% confidence interval (95% CI) 0.091 to 0.28), a bias of 0.16 and an agreement between -0.05 and 0.37. Concerning changes in VDphysiol/VT during PP, estimated VDphysiol/VT had a concordance correlation coefficient of 0.51 (95% CI 0.32 to 0.66) (Figure 4).


Discussion

One of the objectives of our study was to describe alterations in VDalv induced by PP. ARDS is characterized by a heterogeneous lung with the existence of a slow compartment [18,20], defined as areas available for, but partially or totally excluded from, ventilation due in part to a bronchiolar collapse [12,21]. In a previous study, we reported that PP may induce recruitment of this slow compartment, as suggested by its ability to counteract intrinsic PEEP and to decrease the expiratory time constant [12]. In the same study, we also reported that PP leads to a decrease in PaCO2, suggesting diminution of VDalv (alveolar dead space) [12]. Our present study demonstrates that PP may induce a decrease in VDalv. It occurred from the third hour and was maintained throughout the PP session. VDalv may be the consequence of nonperfused or poorly perfused lung areas in ventilated anterior areas, but also of a slow compartment partially excluded from ventilation. Our results suggest that PP induces functional lung recruitment, especially since decreases in VDalv related to PP were associated with a decrease in Pplat and strongly correlated with improvement in compliance. Interestingly, in a previous study of 16 ARDS patients, Pelosi et al. [22] did not find a decrease in VDphysiol after 120 minutes in PP. One of the explanations for this discrepancy could be the different levels of PEEP in the two studies: 12.3 cmH2O in Pelosi et al.'s study and only 6 cmH2O in our study. However, Protti et al. [23], in a study of patients ventilated with a PEEP of 13 cmH2O, demonstrated a strong relation between lung recruitability and decreased PaCO2 related to PP. Pelosi et al. also did not report a decrease in Pplat in PP, as we found, but after returning patients to the supine position [22]. This could be explained by the fact that they used roll under the upper part of the chest wall, leading to a significant impairment in chest wall compliance [22], whereas we did not.

The most beneficial reported effect of PP is oxygenation improvement [24,25]. However, this better oxygenation can be due to (1) lung recruitment related to restoration of functional residual capacity [7] and improvement of the diaphragmatic movement in the posterior part [26-28] or (2) simply to an improvement in the ventilation/perfusion ratio due to a decreased hydrostatic gradient between the anterior and posterior parts of the lung [26,29]. Whereas the first mechanism is crucial, one can say that the second mechanism is less important. This is why the second objective of our study was to test whether the response to PP in terms of PaCO2 was physiologically more relevant than in terms of PaO2/FiO2 ratio. Gattinoni et al. [10] reported that an increase in PaO2/FiO2 ratio > 20 mmHg after six hours of PP is not predictive of the patient's prognosis, whereas a decline in PaCO2 ≥1 mmHg is. In our present study, 7 of 13 patients were PaO2 responders (increased PaO2/FiO2 ratio > 20 mmHg after 15 hours of PP). However, changes in Pplat, PaCO2 and VDalv did not differ between PaO2 responders and PaO2 nonresponders. On the other hand, 7 of 13 patients were PaCO2 responders (decreased PaCO2 > 2 mmHg after 15 hours of PP). PaCO2 responders had a significant decrease in Pplat and VDalv, as well as a significant increase in oxygenation and compliance, compared with nonresponders. Our results are in accordance with a recent study of 32 ARDS patients [23], in which the investigators reported that PaCO2 variation induced by PP, and not PaO2/FiO2 variation, is associated with lung recruitability. Interestingly, in our study, changes in VDalv were not correlated with changes in oxygenation but were strongly correlated with changes in compliance of the respiratory system.

An unexpected result of our work concerns the change over time of respiratory mechanics, blood gas analysis and VDalv. For many years, our PP protocol has been to turn patients to PP for up to 15 to 18 hours per day for 3 days [15]. In the study by Mancebo et al. [30], which concluded that PP may reduce mortality in patients with severe ARDS, PP sessions lasted 20 hours/day. In a recent study, we demonstrated that PP sessions that lasted 18 hours/day were independently associated with survival [31]. In the present study, the maximum effect of PP for VDalv, PaCO2 and Pplat occurred six to nine hours after turning patients to PP. Later the effect seemed to be a decline. How this affects the effect of PP on patient prognosis remains to be elucidated.

The second objective of our study was to validate a recently proposed method to evaluate the VDphysiol/VT ratio [14]. The method is based on CO2 production calculated from the Harris-Benedict equation [19] and on the expired minute ventilation. Siddiki et al. [14] reported that it was associated with mortality in acute lung injury patients in a dose-response manner and proposed its routine use to estimate VDphysiol/VT. However, they did not report any comparison with measured VDphysiol/VT. In the present study, we have demonstrated that this method significantly underestimates VDphysiol/VT, rendering it not accurate enough to assess the degree of lung injury. Interestingly, changes in estimated VDphysiol/VT during PP appeared better correlated with changes in measured VDphysiol/VT and could be proposed in the future in this field. Siddiki et al. [14] proposed the method in the context of a much larger series than ours and in patients with less severe ARDS, rendering it difficult to draw any definitive conclusions.

Our work is limited by the small number of patients included. This is a consequence of our routine protocol, which strictly restricts PP to patients with the most severe ARDS, that is, those with a PaO2/FiO2 ratio < 100 mmHg after 48 hours of ventilation. This also explains why it is not possible to link our results to outcomes. However, despite this limitation, we consider our results relevant from a physiological point of view.


Conclusions

In conclusion, our study demonstrates that PP induces a decrease in PaCO2 and VDalv. This is related to an improvement in respiratory mechanics, with a decrease in Pplat and an increase in compliance. Testing the response to PP appeared to be physiologically more relevant using PaCO2 changes than PaO2/FiO2 changes. How this may affect management at the bedside remains to be studied. Estimated VDphysiol/VT ratios systematically underestimated measured VDphysiol/VT ratios.


Key messages

• PP induced a decrease in VDalv/VT, which was correlated with an improvement in respiratory mechanics.

• Defining the respiratory response to PP appeared more relevant when using PaCO2 changes rather than PaO2/FiO2 changes.

• Estimated VDphysiol/VT using the Harris-Benedict equation systematically underestimated measured VDphysiol/VT.


Abbreviations

ARDS: acute respiratory distress syndrome; PECO2: mixed expired PCO2; PEEP: positive end-expiratory pressure; PetCO2: end-tidal PCO2; PP: prone position; Pplat: plateau pressure; VDalv: alveolar dead space; VDphysiol: physiological dead space.


Competing interests

The authors declare that they have no competing interests, except that of receiving funds from Maquet SA (Ardon, France) to support the cost of publication.


Authors' contributions

CC contributed to the acquisition of data, performed the data analysis, participated in the design of the study and the interpretation of the data, and wrote the manuscript. XR contributed to the acquisition of data, performed the data analysis and participated in the design of the study and the interpretation of the data. KB, SC, VC and BP contributed to the acquisition of data. AVB performed the data analysis, participated in the design of the study and the interpretation of the data, and wrote the manuscript. FJ participated in the design of the study and the interpretation of the data. All authors read and approved the final manuscript.


Acknowledgements

We thank Maquet SA (Ardon, France) for covering the cost of publication. Maquet SA did not participate in the design or conduct of the study or in the interpretation of the data.


References
Ashbaugh DG,Bigelow DB,Petty TL,Levine BE,Acute respiratory distress in adultsLancetYear: 196723193234143721
Gattinoni L,Pesenti A,The concept of "baby lung"Intensive Care MedYear: 20053177678410.1007/s00134-005-2627-z15812622
The Acute Respiratory Distress Syndrome NetworkVentilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndromeN Engl J MedYear: 20003421301130810793162
Puybasset L,Gusman P,Muller JC,Cluzel P,Coriat P,Rouby JJ,Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress SyndromeIntensive Care MedYear: 2000261215122710.1007/s00134005134011089745
Rouby JJ,Brochard L,Tidal recruitment and overinflation in acute respiratory distress syndrome: yin and yangAm J Respir Crit Care MedYear: 200717510410617200505
Bryan AC,Conference on the scientific basis of respiratory therapy: pulmonary physiotherapy in the pediatric age group. Comments of a devil's advocateAm Rev Respir DisYear: 19741101431444440945
Douglas WW,Rehder K,Beynen FM,Sessler AD,Marsh HM,Improved oxygenation in patients with acute respiratory failure: the prone positionAm Rev Respir DisYear: 1977115559566322557
Sud S,Friedrich JO,Taccone P,Polli F,Adhikari NK,Latini R,Pesenti A,Guérin C,Mancebo J,Curley MA,Fernandez R,Chan MC,Beuret P,Voggenreiter G,Sud M,Tognoni G,Gattinoni L,Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysisIntensive Care MedYear: 20103658559910.1007/s00134-009-1748-120130832
Chatte G,Sab JM,Dubois JM,Sirodot M,Gaussorgues P,Robert D,Prone position in mechanically ventilated patients with severe acute respiratory failureAm J Respir Crit Care MedYear: 19971554734789032181
Gattinoni L,Vagginelli F,Carlesso E,Taccone P,Conte V,Chiumello D,Valenza F,Caironi P,Pesenti A,Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndromeCrit Care MedYear: 2003312727273310.1097/01.CCM.0000098032.34052.F914668608
Jolliet P,Bulpa P,Chevrolet JC,Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndromeCrit Care MedYear: 1998261977198510.1097/00003246-199812000-000239875907
Vieillard-Baron A,Rabiller A,Chergui K,Peyrouset O,Page B,Beauchet A,Jardin F,Prone position improves mechanics and alveolar ventilation in acute respiratory distress syndromeIntensive Care MedYear: 20053122022610.1007/s00134-004-2478-z15703898
Nuckton TJ,Alonso JA,Kallet RH,Daniel BM,Pittet JF,Eisner MD,Matthay MA,Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndromeN Engl J MedYear: 20023461281128610.1056/NEJMoa01283511973365
Siddiki H,Kojicic M,Yilmaz M,Thompson TB,Humayr RD,Gajic O,Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trialsCrit CareYear: 201014R14110.1186/cc920620670411
Page B,Vieillard-Baron A,Beauchet A,Aegerter P,Prin S,Jardin F,Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single centerCrit Care MedYear: 20033176576910.1097/01.CCM.0000055402.68581.DC12626981
Prin S,Chergui K,Augarde R,Page B,Jardin F,Vieillard-Baron A,Ability and safety of a heated humidifier to control hypercapnic acidosis in severe ARDSIntensive Care MedYear: 2002281756176010.1007/s00134-002-1520-212447519
Vieillard-Baron A,Prin S,Schmitt JM,Augarde R,Page B,Beauchet A,Jardin F,Pressure-volume curves in acute respiratory distress syndrome: clinical demonstration of the influence of expiratory flow limitation on the initial slopeAm J Respir Crit Care MedYear: 20021651107111211956053
Nunn JF,Respiratory dead space and distribution of the inspired gasApplied Respiratory PhysiologyYear: 1969London: Butterworth179
Roza AM,Shizgal HM,The Harris Benedict equation reevaluated: resting energy requirements and the body cell massAm J Clin NutrYear: 1984401681826741850
Rossi A,Gottfried SB,Higgs BD,Zocchi L,Grassino A,Milic-Emili J,Respiratory mechanics in mechanically ventilated patients with respiratory failureJ Appl PhysiolYear: 198558184918584008405
Koutsoukou A,Armaganidis A,Stavrakaki-Kallergi C,Vassilakopoulos T,Lymberis A,Roussos C,Milic-Emili J,Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndromeAm J Respir Crit Care MedYear: 20001611590159610806160
Pelosi P,Tubiolo D,Mascheroni D,Vicardi P,Crotti S,Valenza F,Gattinoni L,Effects of the prone position on respiratory mechanics and gas exchange during acute lung injuryAm J Respir Crit Care MedYear: 19981573873939476848
Protti A,Chiumello D,Cressoni M,Carlesso E,Mietto C,Berto V,Lazzerini M,Quintel M,Gattinoni L,Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failureIntensive Care MedYear: 2009351011101710.1007/s00134-009-1411-x19189081
Albert RK,Leasa D,Sanderson M,Robertson HT,Hlastala MP,The prone position improves arterial oxygenation and reduces shunt in oleic-acid-induced acute lung injuryAm Rev Respir DisYear: 19871356286333030168
Lamm WJ,Graham MM,Albert RK,Mechanism by which the prone position improves oxygenation in acute lung injuryAm J Respir Crit Care MedYear: 19941501841938025748
Blanch L,Mancebo J,Perez M,Martinez M,Mas A,Betbese AJ,Joseph D,Ballús J,Lucangelo U,Bak E,Short-term effects of prone position in critically ill patients with acute respiratory distress syndromeIntensive Care MedYear: 1997231033103910.1007/s0013400504539407238
Guerin C,Badet M,Rosselli S,Heyer L,Sab JM,Langevin B,Philit F,Fournier G,Robert D,Effects of prone position on alveolar recruitment and oxygenation in acute lung injuryIntensive Care MedYear: 1999251222123010.1007/s00134005105010654205
Krayer S,Rehder K,Vettermann J,Didier EP,Ritman EL,Position and motion of the human diaphragm during anesthesia-paralysisAnesthesiologyYear: 19897089189810.1097/00000542-198906000-000022729629
Richter T,Bellani G,Scott Harris R,Vidal Melo MF,Winkler T,Venegas JG,Musch G,Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injuryAm J Respir Crit Care MedYear: 200517248048710.1164/rccm.200501-004OC15901611
Mancebo J,Fernández R,Blanch L,Rialp G,Gordo F,Ferrer M,Rodríguez F,Garro P,Ricart P,Vallverdú I,Gich I,Castaño J,Saura P,Domínguez G,Bonet A,Albert RK,A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndromeAm J Respir Crit Care MedYear: 20061731233123910.1164/rccm.200503-353OC16556697
Charron C,Bouferrache K,Caille V,Castro S,Aegerter P,Page B,Jardin F,Vieillard-Baron A,Routine prone position in patients with severe ARDS: feasibility and impacts on prognosisIntensive Care MedYear: 20113779680010.1007/s00134-011-2189-121369807
Murray J,Matthay M,Luce J,Flick M,An expanded definition of the adult respiratory distress syndromeAm Rev Respir DisYear: 19881387207233202424

Figures

[Figure ID: F1]
Figure 1 

Alterations during PP in PaO2/FiO2, PaCO2, plateau pressure (Pplat) and alveolar dead space (VDalv/VT) in responders (solid lines) and nonresponders (dotted lines) according to PaO2/FiO2 changes. "PaO2 responders" were defined by an increase in PaO2/FiO2 > 20 mmHg after 15 hours of PP (PP H15). Shown are box and whisker plots. Median = horizontal line inside the box; upper and lower quartiles = whisker plot. Boxes and triangles represent values higher or lower than the upper or lower quartiles. *P < 0.05 for comparison of changes in responders versus nonresponders. PP: prone position.



[Figure ID: F2]
Figure 2 

Alterations during PP in PaO2/FiO2, PaCO2, plateau pressure (Pplat) and alveolar dead space (VDalv/VT) in responders (solid lines) and nonresponders (dotted lines) according to PaCO2 changes. "PaCO2 responders" were defined by a decrease in PaCO2 > 2 mmHg after 15 hours of PP (PP H15). Shown are box and whisker plots. Median = horizontal line inside the box; upper and lower quartiles = whisker plot. Boxes and triangles represent values higher or lower than the upper or lower quartiles. *P < 0.05 for comparison of changes in responders versus nonresponders. PP: prone position.



[Figure ID: F3]
Figure 3 

Correlation between changes in alveolar dead space (ΔVDalv/VT) and changes in compliance of the respiratory system (ΔCrs, left) or in PaO2/FiO2 (ΔPaO2/FiO2, right) at each time of the study when compared with the supine position.



[Figure ID: F4]
Figure 4 

Comparison between measured VDphysiol/VT and estimated VDphysiol/VT [14]using a Bland and Altman representation (left) and a linear correlation (right). (A) and (B) Comparison for each paired data set (n = 78) in the supine position and after 3, 6, 9, 12 and 15 hours in the prone position. (C) and (D) Comparison of changes in VDphysiol/VT assessed according to the two methods between each time of measurement and the previous one. VDphysiol/VT: ratio of physiological dead space to tidal volume.



Tables
[TableWrap ID: T1] Table 1 

Respiratory parameters and blood gas analysis at inclusiona


Parameters Median 1st to 3rd interquartile range
LIS 3.25 3 to 3.25
Tidal volume, mL/kg IDB 6.2 5.6 to 8.3
RR, breaths/minute 22 18 to 26
PEEP, cmH2O 6 5 to 7
FiO2, % 90 90 to 100
Pplat, cmH2O 27 26 to 28
PaO2/FiO2, mmHg 70 51 to 77
PaCO2, mmHg 58 52 to 60
Crs, mL/cmH2O 16 13 to 30
VDalv/VT 0.42 0.35 to 0.47
VDalv, mL 159 95 to 236

aCrs: compliance of the respiratory system; IDB: ideal body weight; LIS: lung injury score [32]; PaCO2: partial pressure of arterial CO2; PaO2/FiO2: ratio of partial pressure of arterial O2 to fraction of inspired O2; PEEP: positive end-expiratory pressure; Pplat: plateau pressure; RR: respiratory rate; VDalv/VT: ratio of alveolar dead space to tidal volume.


[TableWrap ID: T2] Table 2 

Changes in respiratory mechanics, blood gas analysis and VDalv in PP


Parameters Supine PP H3 PP H6 PP H9 PP H12 PP H15 P value
PaO2/FiO2, mmHg 70 (51 to 77) 91 (81 to 103) 87 (73 to 139) 90 (81 to 111) 93 (83 to 137) 99 (83 to 139) < 0.0001
PaCO2, mmHg 58 (52 to 60) 54 (51 to 58) 54 (45 to 59) 50 (47 to 59) 54 (47 to 56) 52 (47 to 56) 0.04
Pplat, cmH2O 27 (26 to 28) 25 (23 to 27) 25 (22 to 26) 25 (23 to 26) 25 (21 to 26) 25 (24 to 26) 0.0004
Crs, mL/cmH2O 16 (13 to 30) 18 (14 to 36) 17 (15 to 40) 18 (15 to 38) 19 (15 to 38) 18 (15 to 30) 0.02
VDalv/VT 0.42 (0.35 to 0.47) 0.31 (0.28 to 0.41) 0.35 (0.22 to 0.39) 0.35 (0.26 to 0.39) 0.39 (0.28 to 0.44) 0.40 (0.26 to 0.45) 0.007

aCrs: compliance of the respiratory system; PP: prone position, Pplat: plateau pressure, VDalv/VT: ratio of alveolar dead space to tidal volume. H3, H6, H9, H12 and H15: 3, 6, 9, 12 and 15 hours of PP, respectively. P value is between supine position and PP. Data are expressed as medians (1st to 3rd interquartile range).


[TableWrap ID: T3] Table 3 

Changes in respiratory mechanics, blood gas analysis and VDalv in PaO2 responders (n = 7) and PaO2 nonresponders (n = 6)a


Supine PP H3 PP H6 PP H9 PP H12 PP H15
Parameters Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range P value

PaO2/FiO2, mmHg R 51 (48 to 69) 91 (86 to 112) 94 (83 to 142) 97 (86 to 126) 98 (93 to 142) 108 (99 to 142) 0.0003
NR 77 (76 to 81) 91 (82 to 99) 79 (73 to 88) 84 (82 to 99) 84 (82 to 87) 89 (82 to 97)
VDalv/VT R 0.43 (0.41 to 0.47) 0.35 (0.31 to 0.46) 0.35 (0.29 to 0.41) 0.38 (0.23 to 0.42) 0.40 (0.31 to 0.40) 0.41 (0.32 to 0.45) 0.31
NR 0.42 (0.36 to 0.50) 0.35 (0.28 to 0.47) 0.31 (0.22 to 0.43) 0.32 (0.27 to 0.44) 0.36 (0.28 to 0.51) 0.35 (0.27 to 0.53)
PaCO2, mmHg R 58 (54 to 60) 52 (51 to 58) 51 (47 to 57) 49 (48 to 53) 54 (48 to 55) 51 (47 to 55) 0.14
NR 55 (52 to 60) 56 (51 to 62) 57 (48 to 62) 55 (48 to 60) 54 (48 to 63) 53 (48 to 58)
Pplat, cmH2O R 27 (27 to 30) 25 (22 to 26) 24 (23 to 26) 24 (23 to 26) 24 (22 to 26) 24 (24 to 25) 0.27
NR 27 (24 to 28) 25 (24 to 28) 25 (22 to 26) 25 (23 to 27) 26 (22 to 26) 26 (25 to 26)
Crs, mL/cmH2O R 16 (13 to 28) 19 (16 to 37) 18 (16 to 38) 18 (16 to 35) 20 (17 to 35) 19 (17 to 33) 0.023
NR 19 (14 to 31) 21 (14 to 33) 21 (14 to 36) 21 (14 to 34) 19 (15 to 34) 19 (15 to 34)

aCrs: compliance of the respiratory system; NR: nonresponders; PP: prone position; Pplat: plateau pressure; R: responders; VDalv/VT: ratio of alveolar dead space to tidal volume. P values represent comparison of changes between responders and nonresponders. H3, H6, H9, H12 and H15: 3, 6, 9, 12 and 15 hours of PP, respectively. Responders are defined as patients whose PaO2/FiO2 increased > 20 mmHg after 15 hours of PP.


[TableWrap ID: T4] Table 4 

Changes in respiratory mechanics, blood gas analysis and VDalv in PaCO2 responders (n = 7) and PaCO2 nonresponders (n = 6)a


Supine PP H3 PP H6 PP H9 PP H12 PP H15
Parameters Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range Median 1st to 3rd interquartile range P values

PaCO2, mmHg) R 58 (55 to 59) 57 (51 to 57) 54 (44 to 57) 50 (46 to 53) 50 (46 to 55) 50 (47 to 52) 0.005
NR 56 (49 to 60) 52 (49 to 60) 54 (49 to 62) 54 (49 to 60) 56 (51 to 62) 57 (49 to 59)
VDalv/VT R 0.40 (0.37 to 0.45) 0.31 (0.29 to 0.46) 0.23 (0.31 to 0.40) 0.26 (0.26 to 0.42) 0.28 (0.24 to 0.44) 0.28 (0.23 to 0.43) 0.005
NR 0.45 (0.42 to 0.51) 0.38 (0.32 to 0.47) 0.38 (0.35 to 0.43) 0.37 (0.33 to 0.45) 0.42 (0.39 to 0.51) 0.44 (0.39 to 0.54)
PaO2/FiO2, mmHg R 70 (59 to 78) 103 (96 to 136) 138 (83 to 146) 111 (91 to 156) 136 (95 to 142) 139 (103 to 148) 0.0001
NR 63 (44 to 76) 83 (80 to 89) 79 (73 to 88) 83 (74 to 88) 84 (62 to 87) 89 (70 to 97)
Pplat, cmH2O R 27 (24 to 27) 23 (22 to 25) 23 (20 to 25) 23 (22 to 25) 21 (21 to 25) 23 (21 to 25) 0.002
NR 28 (26 to 28) 26 (24 to 28) 26 (25 to 28) 26 (25 to 28) 26 (25 to 26) 26 (25 to 26)
Crs, mL/cmH2O R 28 (15 to 30) 30 (18 to 36) 34 (17 to 41) 32 (18 to 38) 32 (19 to 39) 31 (18 to 39) 0.002
NR 15 (12 to 20) 15 (13 to 24) 15 (13 to 23) 15 (13 to 23) 15 (14 to 22) 15 (14 to 22)

aCrs: compliance of the respiratory system; NR: nonresponders; PP: prone position; Pplat: plateau pressure; R: responders; VDalv/VT: ratio of alveolar dead space to tidal volume. P value represents comparison of changes between responders and nonresponders. H3, H6, H9, H12 and H15: 3, 6, 9, 12 and 15 hours of PP, respectively. Responders are defined as patients whose PaCO2 decreased > 2 mmHg after 15 hours of PP.



Article Categories:
  • Research


Previous Document:  T cell activity in successful treatment of chronic urticaria with omalizumab.
Next Document:  Biobanking after robotic-assisted radical prostatectomy: a quality assessment of providing prostate ...